Inhibition and stimulation of mycelial growth of Moniliophthora roreri by flutolanil in populations of Ecuador
Inhibición y estimulación del crecimiento micelial de Moniliophthora roreri por flutolanil en poblaciones de Ecuador
DOI:
https://doi.org/10.15446/acag.v70n3.88905Palabras clave:
Sensitivity to fungicide, moniliasis, frosty pod rot. (en)Sensibilidad a fungicidas, Moniliasis, Pudrición helada de la mazorca (es)
Descargas
Archivos adicionales
Frosty pod rot (FPR) of cacao is caused by Moniliophthora roreri (MR). Effective management must include chemical or biological control, in addition to agronomic tactics. Flutolanil has been effective in controlling FPR. The objective of this research was to determine the response to flutolanil of MR isolates from the Amazon and Coast regions of Ecuador. Percentage of mycelial growth inhibition (PGI), and medium inhibitory concentration (IC50) against three concentrations of the fungicide were determined. One µg mL-1 of flutolanil in the culture medium inhibited completely the growth of the 76 MR isolates. At 0.1 μg mL-1, 74/76 were inhibited between 70-97 % compared to the control. Conversely, at the lower concentrations (0.01-0.001 μg mL-1) the results of inhibition were only of 22 % and 47 %, respectively. Four groups were identified: one included the most sensitive (66/76) to different degrees, and three groups representing 10 isolates that were stimulated at low concentrations of flutolanil. IC50 values were low, indicating very high sensitivity in the MR population. IC50max were 0.1342 and 0.1457 in two isolates from the Coast and the Amazon regions, respectively. Isolates from the Coast were significantly less sensitive to flutolanil than those from the Amazon ( IC50 = 0.046 ± 0.03 and IC50 = 0.030 ± 0.02, respectively), however, the differences were minimal. There were no significant differences when comparing the provinces. The most stimulated isolates were found in the provinces of Orellana and Los Ríos. It is concluded that flutolanil seems effective against the causal agent of FPR in Ecuador, both Coast and Amazon regions.
La pudrición helada de la mazorca (PHM) del cacao es causada por Moniliophthora roreri (MR). El manejo efectivo debe incluir el control químico o biológico, además de las prácticas agronómicas. El flutolanil ha sido eficaz controlando la PHF. El objetivo de esta investigación fue determinar la respuesta al flutolanil de aislados de MR de las regiones Amazonas y Costa de Ecuador. Se determinaron el porcentaje de inhibición del crecimiento micelial (PGI) y la concentración inhibitoria media (IC50) en respuesta a tres concentraciones del fungicida. A 1 µg mL-1 de flutolanil en el medio de cultivo se inhibió totalmente el crecimiento de los 76 aislados de MR. A 0.1 μg mL-1; 74/76 fueron inhibidas entre el 70-97 % en comparación con el control. Por el contrario, a las concentraciones más bajas (0.01-0.001 μg mL-1) los resultados de inhibición fueron solo del 22 % y 47 %, respectivamente. Se identificaron cuatros grupos: uno incluyó a la mayoría sensible (66/76) en diferente medida y tres grupos representaron 10 aislamientos que fueron estimulados a bajas concentraciones de flutolanil. Los IC50 fueron bajos, lo que indica una alta sensibilidad de la población de MR. Los IC50max fueron 0.1342 y 0.1457 en dos aislamientos de la costa y el Amazonas, respectivamente. Los aislados de la costa fueron significativamente menos sensibles al flutolanil que los del Amazonas ( IC50 = 0.046 ± 0.03 y IC50 = 0.030 ± 0.02, respectivamente), sin embargo, las diferencias fueron mínimas. No hubo diferencias significativas al comparar las provincias. Los aislados más estimulados se encontraron en las provincias de Orellana y de Los Ríos. Se concluye que el flutolanil parece efectivo para el manejo del agente causal de la PHM en la Costa y en el Amazonas.
Referencias
Amiri, A., Heath, S.M., & Peres, N.A. (2014). Resistance to Fluopyram, Fluxapyroxad, and Penthiopyrad in Botrytis cinerea from Strawberry. Plant Disease, 98(4), 532-539. https://doi.org/10.1094/PDIS-07-13-0753-RE DOI: https://doi.org/10.1094/PDIS-07-13-0753-RE
Anzules, V., Borjas, R., Alvarado, L., Castro-Cepero, V., & Julca-Otiniano, A. (2019). Cultural, biological and chemical control of Moniliophthora roreri and Phytophthora spp IN Theobroma cacao ‘CCN-51.’ Scientia Agropecuaria, 10(4), 511-520. https://doi.org/10.17268/SCI.AGROPECU.2019.04.08 DOI: https://doi.org/10.17268/sci.agropecu.2019.04.08
Bailey, B., Evans, H.C., Phillips-Mora, W., Ali, S.S., & Meinhardt, L.W. (2018). Moniliophthora roreri, causal agent of cacao frosty pod rot. Molecular Plant Pathology, 19(7), 1580-1594. https://doi.org/10.1111/mpp.12648 DOI: https://doi.org/10.1111/mpp.12648
Bateman, R.P., Hidalgo, E., García, J., Arroyo, C., Ten Hoopen, G.M., Adonijah, V., & Krauss, U. (2005). Application of chemical and biological agents for the management of frosty pod rot (Moniliophthora roreri) in Costa Rican cocoa (Theobroma cacao). Annals of Applied Biology, 147(2), 129-138. https://doi.org/10.1111/j.1744-7348.2005.00012.x DOI: https://doi.org/10.1111/j.1744-7348.2005.00012.x
Brent, K., & Hollomon, D. (2007). Fungicide resistance: The assessment of risk [monograph]. Fungicide Resistence Action Committee (FRAC), 2, 1-53. https://www.semanticscholar.org/paper/FUNGICIDE-RESISTANCE-%3A-THE-ASSESSMENT-OF-RISK-Brent-Hollomon/b9b7aa046d5f3437b898c855bbb9a0c8addb81b1
Campion, C., Chatot, C., Perraton, B., & Andrivon, D. (2003). Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. European Journal of Plant Pathology, 109(9), 983-992. https://doi.org/10.1023/B:EJPP.0000003829.83671.8F DOI: https://doi.org/10.1023/B:EJPP.0000003829.83671.8f
Edgington, L.V., Khew, K.L., & Barron, G.L. (1971). Fungitoxic spectrum of Benzimidazole compounds. Phytopathology, 61(1), 42-44. https://doi.org/10.1094/Phyto-61-42 DOI: https://doi.org/10.1094/Phyto-61-42
Evans, H.C. (2016). Frosty pod rot (Moniliophthora roreri). In B.A. Bailey, & L.W. Meinhardt (Eds.), Cacao Diseases: A History of Old Enemies and New Encounters (pp. 63–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-24789-2_3 DOI: https://doi.org/10.1007/978-3-319-24789-2_3
Fungicide Resistance Action Committee (FRAC). (2020). FRAC Code List ©* 2020: Fungal control agents sorted by cross resistance pattern and mode of action (including FRAC Code numbering). https://u.osu.edu/fruitpathology/files/2020/02/frac-code-list-2020-final.pdf
Ito, Y., Muraguchi, H., Seshime, Y., Oita, S., & Yanagi, S.O. (2004). Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b 560 subunit of succinate dehydrogenase complex (Complex II). Molecular Genetics and Genomics, 272(3), 328-335. https://doi.org/10.1007/s00438-004-1060-2 DOI: https://doi.org/10.1007/s00438-004-1060-2
Koehler, A.M., & Shew, H.D. (2017). Seasonal dynamics and fungicide sensitivity of organisms causing brown patch of tall fescue in North Carolina. Mycologia, 109(4), 667-675. https://doi.org/10.1080/00275514.2017.1377587 DOI: https://doi.org/10.1080/00275514.2017.1377587
Kowalik, M., & Gródek, M. (2002). Effect of fungicides on the growth of fungi isolated from in vitro propagated fruit-bearing plants. Plant Protection Science, 38(Special Issue 2), 329-331. https://doi.org/10.17221/10482-PPS DOI: https://doi.org/10.17221/10482-PPS
Krauss, U., Adonijah, V., Arroyo, C., Bekker, M., Gamboa, A., Steuten, C.D.M., Crozier, J., & Holmes, K. (2012). Cocoa (Theobroma cacao) yield increase in Costa Rica through novel stress management and fertilization approach. Greener Journal of Agricultural Sciences, 2(3), 68-78. https://www.researchgate.net/publication/280561894_Cocoa_Theobroma_cacao_yield_increase_in_Costa_Rica_through_novel_stress_management_and_fertilization_approach
Krauss, U., Hidalgo, E., Bateman, R., Adonijah, V., Arroyo, C., García, J., Crozier, J., Brown, N.A., Ten Hoopen, G.M., & Holmes, K.A. (2010). Improving the formulation and timing of application of endophytic biocontrol and chemical agents against frosty pod rot (Moniliophthora roreri) in cocoa (Theobroma cacao). Biological Control, 54(3), 230-240. https://doi.org/10.1016/j.biocontrol.2010.05.011 DOI: https://doi.org/10.1016/j.biocontrol.2010.05.011
Krauss, U., & Soberanis, W. (2001). Rehabilitation of diseased cacao fields in Peru through shade regulation and timing of biocontrol measures. Agroforestry Systems, 53(2), 179-184. https://doi.org/10.1023/A:1013376504268 DOI: https://doi.org/10.1023/A:1013376504268
Laker, H.A. (1991). Evaluation of systemic fungicides for control of witches’ broom disease of cocoa in Trinidad. Tropical Agriculture, 68(2), 119-124. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5517015
Leandro-Muñoz, M.E., Tixier, P., Germon, A., Rakotobe, V., Phillips-Mora, W., Maximova, S., & Avelino, J. (2017). Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao. PLOS ONE, 12(10), e0184638. https://doi.org/10.1371/JOURNAL.PONE.0184638 DOI: https://doi.org/10.1371/journal.pone.0184638
Lehtonen, M.J., Ahvenniemi, P., Wilson, P.S., German-Kinnari, M., & Valkonen, J.P.T. (2008). Biological diversity of Rhizoctonia solani (AG-3) in a northern potato-cultivation environment in Finland. Plant Pathology, 57(1), 141-151. https://doi.org/10.1111/J.1365-3059.2007.01694.X DOI: https://doi.org/10.1111/j.1365-3059.2007.01694.x
Leroux, P., Gredt, M., Leroch, M., & Walker, A.S. (2010). Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology, 76(19), 6615-6630. https://doi.org/10.1128/AEM.00931-10 DOI: https://doi.org/10.1128/AEM.00931-10
Li, S., Hou, Y., Peng, D., Meng, L., Wang, J., Zhou, M., & Chen, C. (2014). Baseline sensitivity and control efficacy of flutolanil in Rhizoctonia solani. Australasian Plant Pathology, 43(3), 313-320. https://doi.org/10.1007/S13313-014-0272-0 DOI: https://doi.org/10.1007/s13313-014-0272-0
Mahmoud, Y.A.G., Aly, A.A., Omar, M.R., & Ismail, A.W.A. (2006). Variation in sensitivity among some isolates of Macrophomina phaseolina isolated from cotton roots to flutolanil fungicide. Mycobiology, 34(2), 99-103. https://www.tandfonline.com/doi/abs/10.4489/MYCO.2006.34.2.099 DOI: https://doi.org/10.4489/MYCO.2006.34.2.099
Maridueña-Zavala, M.G., Villavicencio-Vásquez, M.E., Cevallos-Cevallos, J.M., & Peralta, E.L. (2016). Molecular and morphological characterization of Moniliophthora roreri isolates from cacao in Ecuador. Canadian Journal of Plant Pathology, 38(4), 460-469. https://doi.org/10.1080/07060661.2016.1261372 DOI: https://doi.org/10.1080/07060661.2016.1261372
Phillips-Mora, W., Aime, M.C., & Wilkinson, M.J. (2007). Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Moniliophthora roreri in tropical America. Plant Pathology, 56(6), 911-922. https://doi.org/10.1111/j.1365-3059.2007.01646.x DOI: https://doi.org/10.1111/j.1365-3059.2007.01646.x
Phillips‐Mora, W., Baqueros, F., Melnick, R.L., & Bailey, B.A. (2015). First report of frosty pod rot caused by Moniliophthora roreri on cacao in Bolivia. New Disease Reports, 31(1), 29-29. https://doi.org/10.5197/J.2044-0588.2015.031.029 DOI: https://doi.org/10.5197/j.2044-0588.2015.031.029
PubChem. (2021, January 16). Flutolanil (Annotation). Environmental fate & exposure. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6658#section=Environmental-Fate-%26-Exposure
Quevedo Guerrero, J., Infante Noblecilla, C.J.C., & García Batista, R.M. (2018). Efecto del uso predominante de fungicidas sistémicos para el control de Sigatoka negra (Mycosphaerella Fijiensis Morelet) en el área foliar del banano. Revista Científica Agroecosistemas, 6(1), 128-136. https://aes.ucf.edu.cu/index.php/aes/article/view/181
Russell, P.E. (2003). Sensitivity baselines in fungicide resistance research and management [monograph]. CropLife International, FRAC. https://www.frac.info/docs/default-source/publications/monographs/monograph-3.pdf
Sierotzki, H., & Scalliet, G. (2013). A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology, 103(9), 880-887. https://doi.org/10.1094/PHYTO-01-13-0009-RVW DOI: https://doi.org/10.1094/PHYTO-01-13-0009-RVW
Terrero Yépez, P.I., Peñaherrera Villafuerte, S.L., Solís Hidalgo, Z.K., Vera Coello, D.I., Navarrete Cedeño, J.B., & Herrera Defaz, M.A. (2018). In vitro compatibility of Trichoderma spp. with fungicides commonly used in cocoa (Theobroma cacao L.). Investigación Agraria, 20(2), 146-151. https://doi.org/10.18004/INVESTIG.AGRAR.2018.DICIEMBRE.146-151 DOI: https://doi.org/10.18004/investig.agrar.2018.diciembre.146-151
Tirado-Gallego, P.A., Lopera-Álvarez, A., & Ríos-Osorio, L.A. (2016). Estrategias de control de Moniliophthora roreri y Moniliophthora perniciosa en Theobroma cacao L.: revisión sistemática. Revista Corpoica. Ciencia y Tecnología Agropecuaria, 17(3), 417-430. https://doi.org/https://doi.org/10.21930/rcta.vol17_num3_art:517 DOI: https://doi.org/10.21930/rcta.vol17_num3_art:517
Torres de la Cruz, M., Ortiz García, C.F., Téliz Ortiz, D., Mora Aguilera, A., & Nava Díaz, C. (2013). Effect of the Azoxystrobin on Moniliophthora roreri, causal agent of frosty pod rot of cocoa (Theobroma cacao). Revista Mexicana de Fitopatología, 31(1), 65-69. http://www.redalyc.org/articulo.oa?id=61230974007
Torres de la Cruz, M., Quevedo Damián, I., Ortiz García, C.F., Lagúnez Espinoza, L. del C., Nieto Angel, D., & Pérez de la Cruz, M. (2019). Control químico de Moniliophthora roreri en México. Biotecnia, 21(2), 55-61. https://doi.org/10.18633/BIOTECNIA.V21I2.906 DOI: https://doi.org/10.18633/biotecnia.v21i2.906
Yamashita, M., & Fraaije, B. (2018). Non-target site SDHI resistance is present as standing genetic variation in field populations of Zymoseptoria tritici. Pest Management Science, 74(3), 672-681. https://doi.org/10.1002/PS.4761 DOI: https://doi.org/10.1002/ps.4761
Yang, L.N., He, M.H., Ouyang, H.B., Zhu, W., Pan, Z.C., Sui, Q.J., Shang, L.P., & Zhan, J. (2019). Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiology, 19(1), 1-10. https://doi.org/10.1186/S12866-019-1574-8/FIGURES/4 DOI: https://doi.org/10.1186/s12866-019-1574-8
Zhao, C., Zhang, X., Hua, H., Han, C., & Wu, X. (2019). Sensitivity of Rhizoctonia spp. to flutolanil and characterization of the point mutation in succinate dehydrogenase conferring fungicide resistance. European Journal of Plant Pathology, 155(1), 13-23. https://doi.org/10.1007/S10658-019-01739-6 DOI: https://doi.org/10.1007/s10658-019-01739-6
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2021 Acta Agronómica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.