Genotype x environment interaction for yield of rice hybrids and inbred varieties in Venezuela
Interacción genotipo x ambiente para el rendimiento de híbridos de arroz y variedades endógamas en Venezuela
DOI:
https://doi.org/10.15446/acag.v71n1.91101Palabras clave:
Adaptability, GGE biplot, Lin-Binns, Stability, Oryza sativa L. (en)Adaptabilidad, estabilidad, GGE biplot, Lin-Binns, Oryza sativa L. (es)
Descargas
Performance tests in multiple locations are essential to study the genotype x–environment interaction, as well as to identify superior genotypes and testing locations. The objective of this study was to evaluate the adaptability and stability of rice hybrids and inbred varieties for grain yield. Six experiments were conducted in rice-producing areas of Venezuela using a randomized complete block design during the dry season of 2015-2016. The ANOVA detected significant differences for genotype, location, and genotype-by-location interaction, highlighting the hybrid by location interaction. The Lin and Binns model identified the hybrids ‘RHA-180’ and ‘HL23035H’ and the ‘Soberana Fl’ variety as adapted and stable. In the GGE biplot model, the first components were significant, and together explained 82 % of the total variability. The hybrids ‘RHA-180’ and ‘HL23035H’ were identified as adapted and stable, whereas the ‘RHA-180’ hybrid was considered the “ideal genotype”. The varieties ‘Soberana Fl’ and ‘SD-20A’ displayed high performance and intermediate stability. The two mega-environments differed by having the best performing genotypes ‘RHA-180’ and ‘Soberana Fl’. Plot 199 was the most representative locality to evaluate hybrids and varieties, whereas the INIA Guárico location discriminated better the rice genotypes. Both models coincided regarding the identification of adapted and stable hybrids and varieties in Venezuela. Nonetheless, while it was easy and efficient to apply the Lin and Binns model, the SREG model was more detailed, effective, and informative.
Las pruebas de rendimiento en múltiples localidades son esenciales para estudiar las interacciones genotipo x–ambiente, así como para identificar genotipos superiores y localidades de prueba. Por esta razón, el objetivo de este estudio fue evaluar la adaptabilidad y estabilidad de híbridos y variedades endógamas de arroz para el rendimiento del grano. Se realizaron seis experimentos en áreas productoras de arroz en Venezuela utilizando un diseño de bloques completos al azar durante la estación seca de 2015-2016. El ANOVA detectó diferencias significativas para el genotipo, la localidad y la interacción genotipo por localidad, destacando la interacción híbrida por localidad. El modelo de Lin y Binns identificó los híbridos "RHA-180" y "HL23035H" y la variedad ‘Soberana Fl’ como adaptados y estables. En el modelo biplot GGE, los primeros componentes fueron significativos y juntos explicaron el 82 % de la variabilidad total. Los híbridos ‘RHA-180’ y ‘HL23035H’ se identificaron como adaptados y estables, mientras que el híbrido "RHA-180" se consideró el "genotipo ideal". Las variedades ‘Soberana Fl’ y 'SD-20A' mostraron un alto rendimiento y una estabilidad intermedia. Los dos mega-ambientes se diferenciaron por tener los genotipos de mejor rendimiento ‘RHA-180’ y ‘Soberana Fl’. La parcela 199 resultó el local más representativo para evaluar híbridos y variedades, mientras que la localidad INIA Guárico discriminó mejor los genotipos de arroz. Ambos modelos coincidieron en la identificación de híbridos y variedades adaptados y estables en Venezuela. No obstante, mientras el modelo de Lin y Binns fue fácil y de eficiente aplicación, el modelo SREG fue más detallado, efectivo e informativo.
Referencias
Acevedo, M., Álvarez, R., Silva, R., Torres O. and Reyes, E. (2019). Interacción genotipo ambiente en arroz para identificar mega-ambientes y ambientes ideales mediante el modelo de regresión por sitios y biplot. Bioagro, 31(1), 35-44. http://www.ucla.edu.ve/bioagro/Rev31(1)/4.%20ms%201820.pdf
Acevedo, M., Reyes, E., Castrillo, W., Torres, O., Marín, C., Álvarez, R., Moreno O. and Torres, E. (2010). Estabilidad fenotípica de arroz de riego en Venezuela utilizando los modelos LIN-BINNS y AMMI. Agronomía Tropical, 60(2), 131-138. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2010000200002&lng=es&tlng=es
Acevedo, M., Silva, R. and Rea, R. (2021). Adaptability and grain yield stability of rice hybrids and varieties in Venezuela. Bioagro, 33(3), 181-190. http://www.doi.org/10.51372/bioagro333.4 DOI: https://doi.org/10.51372/bioagro333.4
Akter, A., Hasan, M. J., Kulsum, U., Rahman, M. H., Khatun, M.and Islam, M. R. (2015). GGE Biplot analysis for yield stability in multi-environment trials of promising hybrid rice (Oryza sativa L.). Bangladesh Rice Journal, 19(1), 1-8. https://doi.org/10.3329/brj.v19i1.25213 DOI: https://doi.org/10.3329/brj.v19i1.25213
Álvarez, R. M., Pérez, M., Reyes, E., Moreno, O. J., Delgado, N., Torrealba, G. T., Acevedo, M. A., Castrillo, W. A., Navas, M. I., Salazar, M., Torres, O. J., Torres, E. A., García, P. J. & Pérez, A. (2008). Evaluación comparativa de híbridos y variedades de arroz en los Llanos Centroccidentales de Venezuela. Agronomía Tropical, 58(2), 101-110. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2008000200001&lng=es&tlng=es
Blanco, P., Molina, F., Silvera W. and Vargas, J. (2015). Evaluación de híbridos del consorcio HIAAL. In: Arroz-Soja. Resultados Experimentales 2014-15. INIA Treinta y Tres. Serie Actividades de Difusión 748, 19-21 http://www.ainfo.inia.uy/digital/bitstream/item/7913/1/ad-748-cap-3-p.19-21.pdf
European Commission, Joint Research Centre, Bryan Heinemann, A., Rebolledo, M. C., Pinzón, S., Berg, M. van den., Hernández-Varela, C. A., Rodríguez-Espinoza, J., Petro-Páez, E. E., Graterol-Matute, E., Ramírez-Villegas, J. and Rodríguez-Baide, J. M. (2018). Modelación del arroz en Latinoamérica: Estado del arte y base de datos para parametrización. Publications Office of the European Union. https://doi.org/10.2760/221399
Food and Agriculture Organization (FAO). (2018). Rice market monitor. Food and Agriculture Organization of the United Nations, 21(1). http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/
Fondo Latinoamericano y del Caribe de Arroz de Riego (FLAR). (2014). Informe Comité técnico del FLAR para la zona tropical - 2014: "Cerrando brechas de rendimiento en ALC". Fondo Latinoamericano para Arroz de Riego. https://es.slideshare.net/xescobar/agronomia-flar-2014-luciano-carmona
Gaklik, D., Folgiarini, A., Grohs, M., Ramao, C., de Quevedo, J., Doring, R., Piazzeta, D., Costa, M., Tomazi I. & Tomazi, T. (2015). Avaliação de genótipos de arroz híbrido no estado do Rio Grande do Sul, na safra 2014/15. Anais IX Congresso brasileiro de arroz irrigado. Seção 1-Fitomelhoramento. https://www.sosbai.com.br/uploads/trabalhos/avaliacao-de-genotipos-de-arroz-hibrido-no-estado-do-rio-grande-do-sul-na-safra-201415_108.pdf
Gauch, H. G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46(4), 1488-1500. https://doi.org/10.2135/cropsci2005.07-0193 DOI: https://doi.org/10.2135/cropsci2005.07-0193
Haider, Z., Akhter, M., Mahmood, A. and Khan, R. A. R. (2017). Comparison of GGE biplot and AMMI analysis of multi-environment trial (MET) data to assess adaptability and stability of rice genotypes. African Journal of Agricultural Research, 12(51), 3542-3548. https://doi.org/10.5897/AJAR2017.12528 DOI: https://doi.org/10.5897/AJAR2017.12528
Huang, M., Tang, Q., Ao, H. and Zou, Y. (2017). Yield potential and stability in super hybrid rice and its production strategies. Journal of Integrative Agriculture. 16(5), 1009-1017. https://doi.org/10.1016/S2095-3119(16)61535-6 DOI: https://doi.org/10.1016/S2095-3119(16)61535-6
Katsura, K., Tsujimoto, Y., Oda, M., Matsushima, K., Inusah, B., Dogbe, W. & Sakagami, J. (2016) Genotype-by-environment interaction analysis of rice (Oryza spp.) yield in a floodplain ecosystem in West Africa. European Journal of Agronomy, 73, 152-159. https://doi.org/10.1016/j.eja.2015.11.014 DOI: https://doi.org/10.1016/j.eja.2015.11.014
Lin, C. S. and Binns, M. R. (1988). A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68(1), 193-198. https://doi.org/10.4141/cjps88-018 DOI: https://doi.org/10.4141/cjps88-018
Ponnuswamy, R., Rathore, A., Vemula, A., Das, R. R., Singh, A. K., Balakrishnan, D., Arremsetty, H. S., Vemuri, R. B. and Ram, T. (2018). Analysis of multi-location data of hybrid rice trials reveals complex genotype by environment interaction. Cereal Research Communications. 46(1), 146-157. https://doi.org/10.1556/0806.45.2017.065 DOI: https://doi.org/10.1556/0806.45.2017.065
R Foundation for Statistical Computing. (2014). R development core team, R: A language and environment for statistical computing. R Foundation for statistical computing. https://www.r-project.org/
Saidaiah P., Sudheer Kumar, S. and Ramesha M. S. (2010) Stability analysis of rice (Oryza sativa) hybrids and their parents. Indian Journal of Agricultural Sciences, 81(2), 111–115. https://www.researchgate.net/publication/288543568_Stability_analysis_of_rice_Oryza_sativa_hybrids_and_their_parents DOI: https://doi.org/10.5539/jas.v2n2p225
Tiwari, D. K., Pandey, P., Giri, S. P. and Dwivedi, J. L. (2011). Heterosis studies for yield and its components in rice hybrids using CMS system. Asian Journal of Plant Sciences, 10(1), 29-42. https://doi.org/10.3923/ajps.2011.29.42 DOI: https://doi.org/10.3923/ajps.2011.29.42
United Nations (UN), Department of Economic and Social Affairs. (2019). World Population Prospects 2019: Highlights. 10 Key Findings. United Nations Deptartment of Economic and Social Affairs. https://www.medbox.org/document/world-population-prospects-2019-highlights-10-key-findings#GO
Yan, W. (2019) LG biplot: a graphical method for mega-environment investigation using existing crop variety trial data. Scientific Reports, 9, 7130. https://doi.org/10.1038/s41598-019-43683-9 DOI: https://doi.org/10.1038/s41598-019-43683-9
Yan, W., Hunt, L. A., Sheng, Q. and Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Breeding, Genetics & Cytology, 40(3), 597-605. https://doi.org/10.2135/cropsci2000.403597x DOI: https://doi.org/10.2135/cropsci2000.403597x
Yan, W. and Kang, M. S. (2003). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. 1 ed. Boca Raton, FL, USA: CRC Press. DOI: https://doi.org/10.1201/9781420040371
Yousuf, M. and Alim, D. (2020). Selection and Hybridization Techniques for Stress Management and Quality Improvement in Rice. In: Roychoudhury A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Singapore: Springer. https://doi.org/10.1007/978-981-15-4120-9_8 DOI: https://doi.org/10.1007/978-981-15-4120-9_8
Yuan, L. (2017). Progress in super-hybrid rice breeding. The Crop Journal, 5(2), 100-102. https://doi.org/10.1016/j.cj.2017.02.001 DOI: https://doi.org/10.1016/j.cj.2017.02.001
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.