Publicado

2023-06-30

Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil

Mejora de la calidad del suelo bajo un cultivo intercalado de café conilon (Coffea canephora P.) en las planicies costeras del sudeste brasileño

DOI:

https://doi.org/10.15446/acag.v71n3.93941

Palabras clave:

agroforestry system, agroecology, shade coffee, soil fertility, soil water content (en)
sistema agroforestal, agroecología, café de sombra, fertilidad del suelo, contenido de agua en el suelo (es)

Descargas

Autores/as

The objective of this study was to evaluate the physical-hydrological and chemical properties and organic carbon stock of soil under intercropped conilon coffee (Coffea canephora P.) and in full sun in the coastal tablelands of Espírito Santo, Brazil. The treatments evaluated were coffee intercropped with rubber tree (CR) and in full sun (FS) in the area 1; coffee intercropped with papaya (CP) and in full sun (FS) in the area 2; coffee intercropped with coconut (CC), in full sun (FS), and an area of ​​native vegetation (NV) in the area 3. The physical and chemical properties of the soil and its organic carbon stocks were measured in layers of 0-0.4 m. In area 1, CR showed lower soil bulk density and temperature, and higher total porosity and macroporosity. In area 2, CP presented higher available water capacity and soil water content, better soil fertility, and lower soil temperature. In area 3, CC presented higher total porosity, available water capacity, and soil organic carbon stock. NV presented physical and chemical properties of soil that limit the agricultural development of the crops. Conilon coffee plantations can improve the physical-hydrological and chemical quality of soil compared to cultivation in full sun and native vegetation in the coastal tablelands, which varies according to the intercropped culture.

El objetivo de este estudio fue evaluar las propiedades físico-hídricas y químicas y el stock de carbono orgánico del suelo bajo un cultivo intercalado de café conilon (Coffea canephora P.) y a pleno sol en las planicies costeras de Espírito Santo, Brasil. Los tratamientos evaluados fueron café intercalado con árbol de goma de caucho (CAG) y a pleno sol (PS) en el área 1; café intercalado con papaya (CP) y a pleno sol (PS) en el área 2; café intercalado con coco (CC), a pleno sol (PS), y un área de vegetación nativa (VN) en el área 3. Se midieron las propiedades físicas y químicas del suelo y sus reservas de carbono orgánico en capas de 0-0.4 m. En el área 1, el CAG mostró una menor densidad aparente y temperatura del suelo, y una mayor porosidad total y macroporosidad. En el área 2, CP presentó una mayor capacidad de agua disponible, contenido de agua en el suelo, mejor fertilidad del suelo y menor temperatura de este. En el área 3, CC presentó una mayor porosidad total, capacidad de agua disponible y stock de carbono orgánico en el suelo. VN presentó propiedades físicas y químicas del suelo que limitan el desarrollo de los cultivos agrícolas. Los cafetales de Conilon pueden mejorar la calidad físico-hídrica y química del suelo en comparación con el cultivo a pleno sol y la vegetación nativa en las planicies costeras, lo cual varía según el cultivo intercalado.

 

Referencias

Broggi, F.; Freire, F. J.; Freire, M. B. G. S.; Nascimento, C. W. A. and Oliveira, A. C. (2010). Evaluation of availability, adsorption and P critical levels in different soils. Revista Ceres, 57(2), 247-252. https://doi.org/10.1590/S0034-737X2010000200017 DOI: https://doi.org/10.1590/S0034-737X2010000200017

Cerri, C. C.; Moreira, C. S.; Alves, P. A.; Toledo, F. H. R. B.; Castigioni, B. A.; Rodrigues, G. A. A.; Cerri, D. G. P.; Cerri, C. E. P.; Teixeira, A. A.; Candiano, C. A. C.; Reis, M. R.; D’Alessandro, S. C. and Turello, L. (2017). Soil carbon and nitrogen stocks due to land use change in coffee areas at Minas Gerais State. Coffee Science, 12(1), 30-41. http://www.coffeescience.ufla.br/index.php/Coffeescience/ article/view/1194 DOI: https://doi.org/10.25186/cs.v12i1.1194

Cintra, F. L. D.; Resende, R. S. and Leal, M. L. S. (2008). Distribution of dwarf coconut roots under water volumes in a hardened soil of the Tablelands. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(6), 614-619. https://doi.org/10.1590/S1415-43662008000600007 DOI: https://doi.org/10.1590/S1415-43662008000600007

Conab. (2018). Acompanhamento da safra brasileira: café. Companhia Nacional de Abastecimiento (Conab), 5(4). http://www.sapc.embrapa.br/arquivos/consorcio/levantamento/conab_safra2018_n4.pdf

Gomes, J. B. V.; Fernandes, M. F.; Barreto, A. C.; Araújo Filho, J. C. and Curi, N. (2012). Soil attributes under agroecosystems and forest vegetation in the coastal tablelands of northeastern Brazil. Ciência e Agrotecnologia, 36(6), 649-664. https://doi.org/10.1590/S1413-70542012000600007 DOI: https://doi.org/10.1590/S1413-70542012000600007

Guimarães, G. P.; Mendonça, E. S.; Passos, R. R. and Andrade, F. V. (2014). Stocks and oxidizable fractions of soil organic matter under organic coffee agroforestry systems. Coffee Science, 9(1), 132-141. http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/564

Haggar, J.; Barrios, M.; Bolaños, M.; Merlo, M.; Moraga, P.; Munguia, R.; Ponce, A.; Romero, S.; Soto, G.; Staver, C. and Virginio, E. M. F. (2011). Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agroforestry Systems, 82(3), 285-301. https://doi.org/10.1007/s10457-011-9392-5 DOI: https://doi.org/10.1007/s10457-011-9392-5

Luizão, F. J.; Tapia-Coral, S.; Gallardo-Ordinola, J.; Silva, G. C.; Luizão, R. C. C.; Trujillo-Cabrera, L.; Wandelli, E. and Fernandes, E. C. M. (2006). Ciclos biogeoquímicos em agroflorestas na Amazônia. In: Gama-Rodrigues, A. C.; Barros, N. F.; Gama-Rodrigues, E. F.; Freitas, M. S. M.; Viana, A. P.; Jasmin, J. M.; Marciano, C. R. and Araújo Carneiro, J. G. (Ed.). Sistemas agroflorestais: bases científicas para o desenvolvimento sustentável. Sociedade Brasileira de Sistemas Agroforestais; EMBRAPA Informação Tecnológica, pp. 87-100. https://www.researchgate.net/publication/289534112_Sistemas_Agroflorestais_Bases_Cientificas_para_o_Desenvolvimento_Sustentavel

Martins, S. G.; Silva, M. L. N.; Avanzi, J. C.; Curi, N. and Fonseca, S. (2010). Cover-management factor and soil and water losses from eucalyptus cultivation and Atlantic Forest at the Coastal Plain in the Espírito Santo State, Brazil. Scientia Florestalis, 38(87), 517-526. https://www.researchgate.net/publication/287951919_Cover-management_factor_and_soil_and_water_losses_from_eucalyptus_cultivation_and_Atlantic_Forest_at_the_Coastal_Plain_in_the_Espirito_Santo_State_Brazil

Méndez, V. E.; Shapiro, E. N. and Gilbert, G. S. (2009). Cooperative management and its effects on shade tree diversity, soil properties and ecosystem services of coffee plantations in western El Salvador. Agroforestry Systems, 76(1), 111-126. https://doi.org/10.1007/s10457-009-9220-3 DOI: https://doi.org/10.1007/s10457-009-9220-3

Mesquita, A. C.; Oliveira, L. E. M.; Cairo, P. A. R. and Viana, A. A. M. (2006). Sazonal production and latex characteristics in rubber tree (Hevea brasiliensis Muell. Arg.) clones in Lavras, State of Minas Gerais, Brazil. Bragantia, 65(4), 633-639. https://doi.org/10.1590/S0006-87052006000400014 DOI: https://doi.org/10.1590/S0006-87052006000400014

Notaro, K. A.; Medeiros, E. K.; Duda, G. P.; Silva, A. O. and Moura, P. M. (2014). Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude. Scientia Agricola, 71(2), 87-95. https://doi.org/10.1590/S0103-90162014000200001 DOI: https://doi.org/10.1590/S0103-90162014000200001

Oliosi, G.; Giles, J. A. D.; Rodrigues, W. P.; Ramalho, J. C. and Partelli, F. L. (2016). Microclimate and development of Coffea canephora cv. Conilon under different shading levels promoted by Australian cedar (Toona ciliata M. Roem. var. Australis). Australian Journal of Crop Science, 10(4), 528-538. https://doi.org/10.21475/ajcs.2016.10.04.p7295x DOI: https://doi.org/10.21475/ajcs.2016.10.04.p7295x

Padovan, M. P.; Brook, R. M.; Barrios, M.; Cruz-Castilho, J. B.; Vilchez-Mendonza, S. J.; Costa, A. N. and Rapidel, B. (2018). Water loss by transpiration and soil evaporation in coffee shaded by Tabebuia rosea Bertol. and Simarouba glauca dc. compared to unshaded coffee in sub-optimal environmental conditions. Agricultural and Forest Meteorology, 248, 1-14. https://doi.org/10.1016/j.agrformet.2017.08.036 DOI: https://doi.org/10.1016/j.agrformet.2017.08.036

Padovan, M. P.; Corteza, V. J.; Navarrete, L. F.; Navarrete, E. D.; Deffner, A. C.; Centeno, L. G; Munguía, R.; Barrios, M.; Vilchez-Mendonza, J. S.; Vega-Jarquín, C.; Costa, A. N; Brook, R. M. and Rapidel, B. (2015). Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agroforestry Systems, 89(5), 857-868. https://doi.org/10.1007/s10457-015-9820-z DOI: https://doi.org/10.1007/s10457-015-9820-z

Prezotti, L. C.; Gomes, J. A.; Dadalto, G. G. and Oliveira, J. A. (2007). Manual de recomendação de calagem e adubação para o Estado do Espírito Santo. Vitória: SEEA/INCAPER/CEDAGRO, pp. 301. https://biblioteca.incaper.es.gov.br/digital/handle/123456789/3242

Santos, H. G. D.; Jacomine, P. K. T.; Anjos, L. H. C.; de Oliveira, V. A.; Lumbreras, J. F.; Coelho, M. R.; Almeida, J. A.; Araujo Filho, J. C.; Oliveira, J. B. and Cunha, T. J. F. (2018). Brazilian soil classification system. Embrapa. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1094001

Souza, G. S.; Alves, D. I.; Dan, M. L.; Lima, J. S. S.; Fonseca, A. L. C. C.; Araújo, J. B. S. and Guimarães, L. A. O. P. (2017). Soil physic-hydraulic properties under organic conilon coffee intercropped with tree and fruit species. Pesquisa Agropecuária Brasileira, 52(7), 539-547. https://doi.org/10.1590/s0100-204x2017000700008 DOI: https://doi.org/10.1590/s0100-204x2017000700008

Souza, G. S.; Lani, J. A.; Infantini, M. B.; Krohling, C. A. and Senra, J. F. B. (2020). Mechanized harvesting of ‘Conilon’' coffee clones. Pesquisa Agropecuária Brasileira, 55. http://dx.doi.org/10.1590/s1678-3921.pab2020.v55.01240 DOI: https://doi.org/10.1590/s1678-3921.pab2020.v55.01240

Souza, H. N.; Goede, R. G. M.; Brussaard, L.; Cardoso, I. M.; Duarte, E. M. G.; Fernandes, R. B. A.; Gomes, L. C. and Pulleman, M. M. (2012). Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems & Environment, 146(1), 179-196. https://doi.org/10.1016/j.agee.2011.11.007 DOI: https://doi.org/10.1016/j.agee.2011.11.007

Souza, J. M.; Bonomo, R.; Pires, F. R. and Bonomo, D. Z. (2014). Soil physical attributes in conilon coffee plantation submitted to subsoiling. Engenharia na Agricultura, 22(5), 413-425. https://doi.org/10.13083/1414-3984.v22n05a03 DOI: https://doi.org/10.13083/1414-3984.v22n05a03

Souza, L. D.; Souza, L. S.; Ledo, C. A. D. and Cardoso, C. E. L. (2016). Root distribution and soil management in a papaya cultivation in the Coastal Tablelands. Pesquisa Agropecuária Brasileira, 51(12), 1937-1947. https://doi.org/10.1590/s0100-204x2016001200004 DOI: https://doi.org/10.1590/s0100-204x2016001200004

Stolf, R.; Reichardt, K. and Vaz, C. M. P. (2005). Response to “Comments on ‘simultaneous measurement of soil penetration resistance and water content with a combined penetrometer–TDR moisture probe’ and ‘A dynamic cone penetrometer for measuring soil penetration resistance”. Soil Science Society of America Journal, 69(3), 927-929. https://doi.org/10.2136/sssaj2005.0927 DOI: https://doi.org/10.2136/sssaj2005.0927

Tavares, P. S.; Giarolla, A.; Chou, S. C.; Silva, A. J. P. and Lyra, A. A. (2018). Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Regional Environmental Change, 18(3), 873-883. https://doi.org/10.1007/s10113-017-1236-z DOI: https://doi.org/10.1007/s10113-017-1236-z

Teixeira, P. C.; Donagemma, G. K.; Fontana, A.; Teixeira, W. G. (2017). Manual de métodos de análise de solo. 3th ed. Embrapa, pp. 230.

Verdin Filho, A. C.; Tomaz, M. A.; Ferrão, R. G.; Ferrão, M. A. G.; Fonseca, A. F. A. and Rodrigues, W. N. (2014). Conilon coffee yield using the programmed pruning cycle and different cultivation densities. Coffee Science, 9(4), 489-494. http://www.sbicafe.ufv.br:80/handle/123456789/8090

Cómo citar

APA

Soares de Souza, G., Carlette Thiengo, C., Silva, S. de A. y Armani Borghi, E. J. (2023). Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil. Acta Agronómica, 71(3), 271–279. https://doi.org/10.15446/acag.v71n3.93941

ACM

[1]
Soares de Souza, G., Carlette Thiengo, C., Silva, S. de A. y Armani Borghi, E.J. 2023. Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil. Acta Agronómica. 71, 3 (jun. 2023), 271–279. DOI:https://doi.org/10.15446/acag.v71n3.93941.

ACS

(1)
Soares de Souza, G.; Carlette Thiengo, C.; Silva, S. de A.; Armani Borghi, E. J. Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil. Acta Agron. 2023, 71, 271-279.

ABNT

SOARES DE SOUZA, G.; CARLETTE THIENGO, C.; SILVA, S. de A.; ARMANI BORGHI, E. J. Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil. Acta Agronómica, [S. l.], v. 71, n. 3, p. 271–279, 2023. DOI: 10.15446/acag.v71n3.93941. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/93941. Acesso em: 14 ago. 2024.

Chicago

Soares de Souza, Gustavo, Cássio Carlette Thiengo, Samuel de Assis Silva, y Edinei José Armani Borghi. 2023. «Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil». Acta Agronómica 71 (3):271-79. https://doi.org/10.15446/acag.v71n3.93941.

Harvard

Soares de Souza, G., Carlette Thiengo, C., Silva, S. de A. y Armani Borghi, E. J. (2023) «Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil», Acta Agronómica, 71(3), pp. 271–279. doi: 10.15446/acag.v71n3.93941.

IEEE

[1]
G. Soares de Souza, C. Carlette Thiengo, S. de A. Silva, y E. J. Armani Borghi, «Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil», Acta Agron., vol. 71, n.º 3, pp. 271–279, jun. 2023.

MLA

Soares de Souza, G., C. Carlette Thiengo, S. de A. Silva, y E. J. Armani Borghi. «Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil». Acta Agronómica, vol. 71, n.º 3, junio de 2023, pp. 271-9, doi:10.15446/acag.v71n3.93941.

Turabian

Soares de Souza, Gustavo, Cássio Carlette Thiengo, Samuel de Assis Silva, y Edinei José Armani Borghi. «Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil». Acta Agronómica 71, no. 3 (junio 30, 2023): 271–279. Accedido agosto 14, 2024. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/93941.

Vancouver

1.
Soares de Souza G, Carlette Thiengo C, Silva S de A, Armani Borghi EJ. Improvement of the soil quality under intercropped conilon coffee (Coffea canephora P.) in the coastal tablelands of Southeast Brazil. Acta Agron. [Internet]. 30 de junio de 2023 [citado 14 de agosto de 2024];71(3):271-9. Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/93941

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

191

Descargas

Los datos de descargas todavía no están disponibles.