Publicado

2023-12-20

Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity

Fisiología de semillas de zanahoria tratadas con bioestimulante de algas rojas y expuestas a diferentes temperaturas y salinidades

DOI:

https://doi.org/10.15446/acag.v72n1.96143

Palabras clave:

algal extract, Daucus carota L., germination temperature, tolerance to salinity (en)
Daucus carota L., extracto de algas, temperatura de germinación, tolerancia a la salinidad (es)

Descargas

Autores/as

Carrot (Daucus carota L.) is a horticulture crop species with economic importance. The performance of this crop can be improved with the use of seaweed extracts, which are a sustainable alternative to chemical fertilizers and biostimulants. Few studies have been performed aiming to determine the effects of algae-based biostimulants, especially red algae of the genus Solieria, on seed treatment and physiology. This study aimed to evaluate the effect of seed treatment with Solieria filiformis algal biostimulant for improving the physiological potential of carrot seeds of Brasilia Irecê and Nantes cultivars. Carrot seeds of both cultivars were treated with 0, 1, 2, and 4 mL L−1 of the biostimulant, after which they were subjected to germination and seedling growth evaluation at different temperatures and salinities. The results were analyzed by analysis of variance, Tukey’s test, and regression. It was observed that 30 °C temperature reduced carrot germination and seedling growth for the cultivars. No dose of red algae biostimulant improved germination of carrot seeds under both adequate and stress conditions of temperature and salinity for the cultivars analyzed.

La zanahoria (Daucus carota L.) es una especie hortícola de importancia económica. El rendimiento de estos cultivos se puede mejorar con el uso de extractos de algas, que son una alternativa sostenible a los fertilizantes químicos y bioestimulantes. Se han realizado pocos estudios con el objetivo de determinar los efectos de los bioestimulantes a base de algas, especialmente las algas rojas del género Solieria, sobre el tratamiento y la fisiología de las semillas. Este estudio tuvo como objetivo evaluar el efecto del tratamiento de semillas con bioestimulante del alga Solieria filiformis en la mejora del potencial fisiológico de las semillas de zanahoria de los cultivares Brasília Irecê y Nantes. Las semillas de zanahoria de ambos cultivares se trataron con 0, 1, 2 y 4 mL L-1 del bioestimulante. Posteriormente, las semillas fueron sometidas a pruebas de germinación y evaluación del crecimiento de las plántulas a diferentes temperaturas y salinidades. Los resultados se analizaron mediante análisis de varianza, prueba de Tukey y regresión. Se observó que la temperatura de 30 °C redujo la germinación de la zanahoria y el crecimiento de las plántulas en los cultivares. Ninguna dosis de bioestimulante de algas rojas mejoró la germinación de las semillas de zanahoria en condiciones adecuadas y de estrés de temperatura y salinidad en ambos cultivares.

Referencias

Alam, H. Z.; Braun, G.; Norrie, J. and Hodges, D. M. (2014). Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Canadian Journal of Plant Science, 94(2), 337-348. https://doi.org/10.4141/cjps2013-135 DOI: https://doi.org/10.4141/cjps2013-135

Bolton, A. and Simon, P. (2019). Variation for salinity tolerance during seed germination in diverse carrot (Daucus carota L.) Germplasm. HortScience, 54(1), 38-44. https://doi.org/10.21273/HORTSCI13333-18 DOI: https://doi.org/10.21273/HORTSCI13333-18

Brasil; Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Brasília. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf

Bravo, M. N.; Silva, S.; Coelho, A. V.; Vilas Boas, L. and Bronze, M. R. (2006). Analysis of phenolic compounds in Muscatel wines produced in Portugal. Analytica Chimica Acta, 563(1-2), 84-92. https://doi.org/10.1016/j.aca.2005.11.054 DOI: https://doi.org/10.1016/j.aca.2005.11.054

Bulgari, R.; Franzoni, G. and Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306 https://doi.org/10.1016/j.aca.2005.11.054 DOI: https://doi.org/10.3390/agronomy9060306

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371-393. https://doi.org/10.1007/s10811-010-9560-4 DOI: https://doi.org/10.1007/s10811-010-9560-4

Dias, M. A.; Lopes, J. C.; Guimarães, G. A. M.; Souza Neto, J. D. and Bernardes, C. O. (2015). Carrot seed germination in different conditions of salinity and temperature. Idesia, 33(4), 41-46. https://doi.org/10.4067/S0718-34292015000400006 DOI: https://doi.org/10.4067/S0718-34292015000400006

Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196(30), 3-14. https://doi.org/10.1016/j.scienta.2015.09.021 DOI: https://doi.org/10.1016/j.scienta.2015.09.021

Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D. and Nardi, S. (2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science, 9, 428. https://doi.org/10.3389/fpls.2018.00428 DOI: https://doi.org/10.3389/fpls.2018.00428

Fernando, I. P. S.; Kim, M.; Son, K. T.; Jeong, Y. and Jeon, Y. J. (2016). Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. Journal of Medicinal Food, 19(7), 1-14. https://doi.org/10.1089/jmf.2016.3706 DOI: https://doi.org/10.1089/jmf.2016.3706

Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450

Heden, P. (2019). A novel gibberellin promotes seedling establishment. Nature Plants, 5, 459-460. https://doi.org/10.1038/s41477-019-0427 DOI: https://doi.org/10.1038/s41477-019-0427-7

Jayaraj, J.; Wan, A.; Rahman, M. and Punja, Z. K. (2008). Seaweed extract reduces foliar fungal diseases on carrot. Crop Protection, 27(10), 1360-1366. https://doi.org/10.1016/j.cropro.2008.05.005 DOI: https://doi.org/10.1016/j.cropro.2008.05.005

Kauffman, G. L.; Kneivel, D. P. and Watschke, T. L. (2007). Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial Ryegrass. Crop Science, 47(1), 261-267. https://doi.org/10.2135/cropsci2006.03.0171 DOI: https://doi.org/10.2135/cropsci2006.03.0171

Khan, W.; Rayirath, U. P.; Subramanian, S.; Jithesh, M. N.; Rayorath, P.; Hodges, D. M.; Critchley, A. T.; Craigie, J. S.; Norrie, J. and Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x DOI: https://doi.org/10.1007/s00344-009-9103-x

Lima, B. G. and Torres, S. B. (2009). Estresses hídrico e salino na germinação de sementes de Zizyphus joazeiro Mart. (Rhamnaceae). Revista Caatinga, 22(4), 93-99. https://www.redalyc.org/articulo.oa?id=237117843016

Locatelli, C.; Leal, P. C.; Yunes, R. A.; Nunes, R. J. and Creczynski-Pasa, T. B. (2009). Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death. Chemico-Biological Interactions, 181(2), 175-184. https://doi.org/10.1016/j.cbi.2009.06.019 DOI: https://doi.org/10.1016/j.cbi.2009.06.019

Mercier, L.; Lafitte, C.; Borderies, G.; Briand, X.; Esquerré-Tugayé, M. T. and Fournier, J. (2001). The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytologist, 149(1), 43-51. https://doi.org/10.1046/j.1469-8137.2001.00011.x DOI: https://doi.org/10.1046/j.1469-8137.2001.00011.x

Mukherjee, A. and Patel, J. S. (2020). Seaweed extract: Biostimulator of plant defense and plant productivity. International Journal of Environmental Science and Technology, 17, 553-558. https://doi.org/10.1007/s13762-019-02442-z DOI: https://doi.org/10.1007/s13762-019-02442-z

Nakagawa, J. (1999). Testes de vigor baseados no desempenho de plântulas. In: Krzyzanowski, F. C.; Vieira, R. D.; França Neto, J. B. (Ed.). Vigor de sementes: conceitos e testes. Londrina: Abrates.

Nasri, N.; Saidi, I.; Kaddour, R. and Lachaâl, M. (2015). Effect of salinity on germination, seedling growth and acid phosphatase activity in lettuce. American Journal of Plant Sciences, 6(1), 57-63. https://doi.org/10.1007/s11738-010-0625-4 DOI: https://doi.org/10.4236/ajps.2015.61007

Niemetz, R. and Gross, G. G. (2005). Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry, 66(17), 2001-2011. https://doi.org/10.1016/j.phytochem.2005.01.009 DOI: https://doi.org/10.1016/j.phytochem.2005.01.009

Nonogaki, H.; Bassel, G. W. and Bewley, J. D. (2010). Germination-Still a mystery. Plant Science, 179(6), 574-581. https://doi.org/10.1016/j.plantsci.2010.02.010 DOI: https://doi.org/10.1016/j.plantsci.2010.02.010

Oancea, F.; Velea, S.; Fătu, Viorel; Mincea, C. and Ilie, L. (2013). Micro-algae based plant biostimulant and its effect on water stressed tomato plants. Romanian Journal of Plant Protection, 6, 104-117. https://www.researchgate.net/publication/318489795_Micro-algae_based_plant_biostimulant_and_its_effect_on_water_stressed_tomato_plants

Peñuela, A.; Robledo, D.; Bourgougnon, N.; Bedoux, G.; Hernández-Núñez, E. and Freile-Peregrín, Y. (2018). Environmentally friendly valorization of Solieria filiformis (Gigartinales, Rhodophyta) from IMTA using a biorefinery concept. Marine Drugs, 16(12), 487. https://doi.org/10.3390/md16120487 DOI: https://doi.org/10.3390/md16120487

Pereira, R. S.; Nascimento, W. M. and Vieira, J. V. (2007). Germinação e vigor de sementes de cenoura sob condições de altas temperaturas. Horticultura Brasileira, 25(2), 215-219. https://doi.org/10.1590/S0102-05362007000200017 DOI: https://doi.org/10.1590/S0102-05362007000200017

Petchidurai, G.; Nagoth, J. A.; John, M. S.; Sahayaraj, K.; Murugesan, N. and Pucciarelli, S. (2019). Standardization and quantification of total tannins, condensed tannin and soluble phlorotannins extracted from thirty-two drifted coastal macroalgae using high performance liquid chromatography. Bioresource Technology Reports, 7, 100273. https://doi.org/10.1016/j.biteb.2019.100273 DOI: https://doi.org/10.1016/j.biteb.2019.100273

Rengasamy, K. R. R.; Kulkarni, M. J.; Pendota, S. C. and Van Staden, J. (2016). Enhancing growth, phytochemical constituents and aphid resistance capacity in cabbage with foliar application of eckol – A biologically active phenolic molecule from brown seaweed. New Biotechnology, 33(2), 273-279. https://doi.org/10.1016/j.nbt.2015.11.002 DOI: https://doi.org/10.1016/j.nbt.2015.11.002

Shiyab, S. and Simon, P. (2017). Effects of direct and gradual salinity exposure on carrot (Daucus carota L.) seeds and recovery response. Academia Journal of Biotechnology, 5(3), 038-043. https://doi.org/10.15413/ajb.2017.0127

Shu, K.; Chen, Q.; Wu, Y.; Liu, R.; Zhang, H.; Wang, P.; Li, Y.; Wang, S.; Tang, S.; Liu, C.; Yang, W.; Cao, X.; Serino, G. and Xie, Qi. (2016). ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. The Plant Journal, 85(3), 348-361. https://doi.org/10.1111/tpj.13109 DOI: https://doi.org/10.1111/tpj.13109

Neumann Silva, V.; Do Amaral, J. C.; De Martini, A.; Godoy Fabiciak, F. and Schmitz Santos, I. (2018). Effect of Ascophyllum nodosum on the growth and flowering of Celosia cristata. Horticultura Argentina, 38(95), 6-13. https://www.horticulturaar.com.ar/en/pdf/260/effect-of-ascophyllum-nodosum-on-the-growth-and-flowering-of-celosia-cristata.pdf

Souza, B. W. S.; Cerqueira, M. A.; Martins, J. T.; Quintas, M. A. C.; Ferreira, A. C. S.; Teixeira, J. A. and Vicente, A. A. (2011). Antioxidant potential of two red seaweeds from the Brazilian coasts. Journal of Agriculture and Food Chemistry, 59(10), 5589-5594. https://doi.org/10.1021/jf200999n DOI: https://doi.org/10.1021/jf200999n

Tanna, B.; Brahmbhatt, H. R. and Mishra, A. (2019). Phenolic, flavonoid, and amino acid compositions reveal that selected tropical seaweeds have the potential to be functional food ingredients. Journal of Food Processing and Preservation, 43(12), e14266. https://doi.org/10.1111/jfpp.14266 DOI: https://doi.org/10.1111/jfpp.14266

Toh, S.; Imamura, A.; Watanabe, A.; Nakabayashi, K.; Okamoto, M.; Jikumaru, Y.; Hanada, A.; Aso, Y.; Ishiyama, K.; Tamuna, N.; Iuchi, S.; Kobayashi, M.; Yamaguchi, S.; Kamiya, Y.; Nambara, E. and Kawakami, N. (2008). High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology, 146(3), 1368-1385. https://doi.org/10.1104/pp.107.113738 DOI: https://doi.org/10.1104/pp.107.113738

Van Oosten, M. J.; Pepe, O.; De Pascale, S.; Silletti, S. and Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 5. https://doi.org/10.1186/s40538-017-0089-5 DOI: https://doi.org/10.1186/s40538-017-0089-5

Zeid, I. M.; Ghraib, F. A. E. L.; Ghazi, S. M. and Ahmed, E. Z. (2019). Promotive effect of ascorbic acid, gallic acid, selenium and nano-selenium on seed germination, seedling growth and some hydrolytic enzymes activity of cowpea (Vigna unguiculata) seedling. Journal of Plant Physiology & Pathology, 7(1), 1-8. https://doi.org/10.4172/2329-955x.1000193 DOI: https://doi.org/10.4172/2329-955X.1000193

Cómo citar

APA

Elisa Cossa, G., Neumann Silva, V., Mendes Milanesi, P. y Pedro Tironi, S. (2023). Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity. Acta Agronómica, 72(1), 63–69. https://doi.org/10.15446/acag.v72n1.96143

ACM

[1]
Elisa Cossa, G., Neumann Silva, V., Mendes Milanesi, P. y Pedro Tironi, S. 2023. Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity. Acta Agronómica. 72, 1 (oct. 2023), 63–69. DOI:https://doi.org/10.15446/acag.v72n1.96143.

ACS

(1)
Elisa Cossa, G.; Neumann Silva, V.; Mendes Milanesi, P.; Pedro Tironi, S. Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity. Acta Agron. 2023, 72, 63-69.

ABNT

ELISA COSSA, G.; NEUMANN SILVA, V.; MENDES MILANESI, P.; PEDRO TIRONI, S. Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity. Acta Agronómica, [S. l.], v. 72, n. 1, p. 63–69, 2023. DOI: 10.15446/acag.v72n1.96143. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/96143. Acesso em: 14 jul. 2024.

Chicago

Elisa Cossa, Gisele, Vanessa Neumann Silva, Paola Mendes Milanesi, y Siumar Pedro Tironi. 2023. «Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity». Acta Agronómica 72 (1):63-69. https://doi.org/10.15446/acag.v72n1.96143.

Harvard

Elisa Cossa, G., Neumann Silva, V., Mendes Milanesi, P. y Pedro Tironi, S. (2023) «Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity», Acta Agronómica, 72(1), pp. 63–69. doi: 10.15446/acag.v72n1.96143.

IEEE

[1]
G. Elisa Cossa, V. Neumann Silva, P. Mendes Milanesi, y S. Pedro Tironi, «Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity», Acta Agron., vol. 72, n.º 1, pp. 63–69, oct. 2023.

MLA

Elisa Cossa, G., V. Neumann Silva, P. Mendes Milanesi, y S. Pedro Tironi. «Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity». Acta Agronómica, vol. 72, n.º 1, octubre de 2023, pp. 63-69, doi:10.15446/acag.v72n1.96143.

Turabian

Elisa Cossa, Gisele, Vanessa Neumann Silva, Paola Mendes Milanesi, y Siumar Pedro Tironi. «Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity». Acta Agronómica 72, no. 1 (octubre 30, 2023): 63–69. Accedido julio 14, 2024. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/96143.

Vancouver

1.
Elisa Cossa G, Neumann Silva V, Mendes Milanesi P, Pedro Tironi S. Physiology of carrot seeds treated with red seaweed biostimulant and exposed to different temperatures and salinity. Acta Agron. [Internet]. 30 de octubre de 2023 [citado 14 de julio de 2024];72(1):63-9. Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/96143

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

162

Descargas

Los datos de descargas todavía no están disponibles.