La densidad aparente y el tamaño de agregados del suelo controlan el crecimiento radical de Megathyrsus maximus
Soil bulk density and aggregate size control plant root growth of Megathyrsus maximus
DOI:
https://doi.org/10.15446/acag.v70n4.88785Keywords:
densificación del suelo, indicadores, pasto guinea, sistemas silvopastoriles, salud del suelo (es)soil densification, indicators, pasture guinea, silvopastoral systems, soil health (en)
Downloads
La importancia de las propiedades físicas del suelo influye de manera apreciable en su funcionamiento, calidad del agua, control climático, ciclo de los nutrientes y biodiversidad, entre otros. Estas proporcionan más funciones ecosistémicas que solamente el aporte nutricional para la producción agrícola. Actualmente, el suelo está sometido a presión de manejo para la producción de alimentos, energía y materia prima y esto ha llevado a su deterioro físico y degradación. Este trabajo tiene como objetivo evaluar los efectos de la densidad aparente y el tamaño de agregados de suelo de sistemas silvopastoriles (SSP) (proveniente de pasturas del bosque seco tropical) sobre el crecimiento del pasto guinea (Megathyrsus maximus) cv. Mombasa. Para tal fin, se realizaron dos experimentos separados bajo condiciones de invernadero, estableciendo valores crecientes a cada variable a través de ejercer fuerzas mecánicas (densidad aparente: 0.93-1.80 Mg m-3) y tamizado (tamaño medio de agregados: 0.125-7.15 mm) y luego se sembraron semillas del pasto y se dejaron crecer por 30 días. Se encontraron dos modelos funcionales que relacionan la biomasa de las raíces del pasto con el valor de la densidad aparente y con el tamaño medio de agregados del suelo. Se concluye que para ambas variables se detectan modelos de regresión cuadrática, es decir, de punto óptimo; siendo estos valores óptimos para la densidad aparente de 1.0 Mg m-3 y de tamaño de agregados de 1.5-2.0 mm. Estos parámetros podrían ser utilizados como indicadores físicos en el diagnóstico de la salud del suelo y de utilidad en el establecimiento de pasturas de la región del Valle del Rio Sinú.
The importance of physicals properties of soil has an appreciable influence on their functions, water quality, climate control, nutrient cycling, and biodiversity, among others. These provide more ecosystem functions than just the nutritional contribution to agricultural production. Currently, the soil is under management pressure to the food production energy and raw material, which has led to its physical deterioration and degradation. The objective of this study is to evaluate the effects of bulk density and soil aggregate size silvopastoral systems (from tropical dry forest pastures) on the growth of guinea grass (Megathyrsus maximus) cv. Mombasa. To this end, two separate experiments were carried out under greenhouse conditions, by establishing increasing values of each variable through exerting mechanical forces (bulk density: 0.93-1.80 Mg m-3) and sieved (average size of aggregates: 0.125-7.15 mm) and then grass seeds were sown and allowed to grow for 30 days. Two functional models are found which relate the biomass of grass roots with the value of bulk density and with the average size of soil aggregates. It is concluded that for both variables, quadratic regression models are detected, namely, of optimal point; being these optimal values for the apparent density of 1.0 Mg m-3 and of aggregate size of 1.5-2.0 mm. These parameters could be used as physical indicators in the diagnosis of soil health in the Rio Sinú Valley region.
The objective of this study was to evaluate the effects of bulk density and soil aggregate size (from tropical dry forest pastures) on the growth of guínea grass (Megathyrsus maximus) cv. Mombasa. To this end, two separate experiments were carried out under greenhouse conditions, by establishing increasing values of each variable through exerting mechanical forces (apparent density: 0.93-1.80 Mg m-3) and screening (average size of aggregates: 0.125-7.15 mm ) and then grass seeds were sown and allowed to grow for 30 days. Two functional models were found which relate the biomass of grass roots with the value of bulk density and with the average size of soil aggregates. It is concluded that for both variables, quadratic regression models were detected, namely, of optimal point; being these optimal values for the apparent density of 1.0 Mg m-3 and of aggregate size of 1.5-2.0 mm. These parameters could be used as physical indicators in the diagnosis of soil health in the Rio Sinú Valley region.
References
Andrade, B.O., Koch, C., Boldrini, I.I., Vélez-Martin, E., Hasenack, H., Hermann, J.M., Kollmann, J., Pillar, V.D. y Overbeck, G.E. (2015). Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Natureza & Conservação, 13(2), 95-104. https://doi.org/10.1016/j.ncon.2015.08.002 DOI: https://doi.org/10.1016/j.ncon.2015.08.002
Andrews, S.S. y Carrol, R. (2014). Designing a soil quality assessment tool for sustainable management. Ecological Applications, 11(6), 1573–1585. https://doi.org/10.1890/1051-0761(2001)011[1573:DASQAT]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2001)011[1573:DASQAT]2.0.CO;2
Angers, D.A. (1992). Changes in soil aggregation and organic carbon under corn and alfalfa. Soil Science Society of America Journal, 56(4), 1244-1249. https://doi.org/10.2136/sssaj1992.03615995005600040039x DOI: https://doi.org/10.2136/sssaj1992.03615995005600040039x
Barragán-Hernández, W.A., y Cajas-Girón, Y.S. (2019). Cambios bromatológicos y estructurales en Megathyrsus maximum bajo cuatro arreglos silvopastoriles. Ciencia y Tecnología Agropecuaria, 20(2), 231-244. https://doi.org/10.21930/rcta.vol20_num2_art:1458 DOI: https://doi.org/10.21930/rcta.vol20_num2_art:1458
Braunack, M.V. y Dexter, A.R. (1989). Soil aggregation in the seedbed: A review. I. Properties of aggregates and beds of aggregates. Soil and Tillage Research, 14(3), 259-279. https://doi.org/10.1016/0167-1987(89)90013-5 DOI: https://doi.org/10.1016/0167-1987(89)90013-5
Fortes González, D., Valenciaga, D., García, C.R., García, M., Cruz, A.M. y Romero, A. (2016). Evaluation of three varieties of Megathyrsus maximus in the dry period. Cuban Journal of Agricultural Science, 50(1), 131–137. https://www.researchgate.net/publication/313367209_Evaluation_of_three_varieties_of_Megathyrsus_maximus_in_the_dry_period
Hargreaves, P.R., Baker, K.L., Graceson, A., Bonnett, S., Ball, B.C. y Cloy, J.M. (2019). Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years. European Journal of Agronomy, 109, 125916. https://doi.org/10.1016/j.eja.2019.125916 DOI: https://doi.org/10.1016/j.eja.2019.125916
Horn R., Domżżał, H., Słowińska-Jurkiewicz, A. y van Ouwerkerk, C. (1995). Soil compaction processes and their effects on the structure of arable soils and the environment. Soil and Tillage Research, 35(1-2), 23-36. https://doi.org/10.1016/0167-1987(95)00479-C DOI: https://doi.org/10.1016/0167-1987(95)00479-C
IDEAM, Ministerio de Ambiente y Desarrollo Sostenible (MADS), Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.). (2015). Síntesis del estudio nacional de la degradación de suelos por erosión en Colombia-2015. IDEAM, MADS.
Douglas, K.L., Wienhold, B.J., Kang, S., Zobeck, T.M. y Andrews, S.S., (2011). Indices for soil management decisions. Soil Management Building a Stable Base for Agriculture, 39-50. https://digitalcommons.unl.edu/usdaarsfacpub/1381
Linn, D.M.y Doran, J.W. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48(6), 1267. https://doi.org/10.2136/sssaj1984.03615995004800060013x DOI: https://doi.org/10.2136/sssaj1984.03615995004800060013x
Lipiec, J. y Stepniewski, W. (1995). Effects of soil compaction and tillage systems on uptake and losses of nutrients. Soil and Tillage Research, 35(1-2), 37-52. https://doi.org/10.1016/0167-1987(95)00474-7 DOI: https://doi.org/10.1016/0167-1987(95)00474-7
López Falcón, R. (2002). Degradación del suelo: causas, procesos, evaluación e investigación. Segunda edición. Talleres gráficos del Centro Interamericano de Desarrollo e Investigación Ambiental y Territorial Universidad de los Andes (CIDIAT), Mérida (Venezuela). (pp. 40-75).
Bernal Figueroa, A.A., Montaño Santana, J.C., Sánchez Avella, R., Albarran, L. y Forero Ulloa, F.E. (2021). Evaluación de materiales encalantes y orgánicos sobre las bases intercambiables de un suelo sulfatado ácido en invernadero. Temas Agrarios, 19(1), 19-31. https://www.researchgate.net/publication/351005545_Eva luacion_de_materiales_encalantes_y_organicos_sobre_las_bases_i ntercambiables_de_un_suelo_sulfatado_acido_en_invernadero DOI: https://doi.org/10.21897/rta.v19i1.722
López-Vigoa, O., Sánchez-Santana, T., Iglesias-Gómez, J.M., Lamela-López, L., Soca-Pérez, M., Arece-García, J. y Milera-Rodríguez, M. (2017). Los sistemas silvopastoriles como alternativa para la producción animal sostenible en el contexto actual de la ganadería tropical. Pastos y Forrajes, 40(2), 83-95. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942017000200001
Martínez, J., Cajas, Y.S., León, J.D. y Osorio, N.W. (2014). Silvopastoral systems enhance soil quality in grasslands of Colombia. Applied and Environmental Soil Science, 2014. https://doi.org/10.1155/2014/359736 DOI: https://doi.org/10.1155/2014/359736
Mekuria, W., Wondie, M., Amare, T., Wubet, A., Feyisa, T. y Yitaferu, B. (2018). Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon, 4(8), e00764. https://doi.org/10.1016/j.heliyon.2018.e00764 DOI: https://doi.org/10.1016/j.heliyon.2018.e00764
Miner, G.L., Delgado, J.A., Ippolito, J.A., Barbarick, K.A., Stewart, C.E., Manter, D.K., Del Grosso, S.J., Halvorson, A.D., Floyd, B.A. y Adamo, R.E.D. (2018). Influence of long-term nitrogen fertilization on crop and soil micronutrients in a no-till maize cropping system. Field Crops Research, 228, 170-182. https://doi.org/10.1016/j.fcr.2018.08.017 DOI: https://doi.org/10.1016/j.fcr.2018.08.017
Moebius-Clune, B.N., Moebius-Clune, D.J., Gugino, B.K., Idowu, O.J., Schindelbeck, R.R., Ristow, A.J., van Es, H.M., Thies, J.E., Shayler H.A....y Abawi, G.S. (2016). Comprehensive assessment of soil health. The Cornell Framework Manual. http://www.css.cornell.edu/extension/soil-health/manual.pdf
Murgueitio, E. (1992). Sistemas sostenibles de doble propósito como alternativa para la economía campesina. Livestock Research for Rural Development, 4(3), 1-11. http://www.lrrd.org/lrrd4/3/enrique1.htm
Ordóñez, I., López, I.F., Kemp, P.D., Descalzi, C.A., Horn, R., Zúñiga, F., Dec, D. y Dörner, J. (2018). Effect of pasture improvement managements on physical properties and water content dynamics of a volcanic ash soil in southern Chile. Soil and Tillage Research, 178, 55-64. https://doi.org/10.1016/j.still.2017.11.013 DOI: https://doi.org/10.1016/j.still.2017.11.013
Osman, K.T. (2013). Soils. Principles, properties and management. Springer. https://doi.org/10.1007/978-94-007-5663-2 DOI: https://doi.org/10.1007/978-94-007-5663-2
Paredes, S.S., Stritzler, N.P., Bono, A. y Distel, R.A. (2018). Perennial warm-season grass monocultures and mixtures: Biomass production and soil improvement in semiarid and shallow soil conditions. Journal of Arid Environments, 154, 82-88. https://doi.org/10.1016/j.jaridenv.2018.02.008 DOI: https://doi.org/10.1016/j.jaridenv.2018.02.008
Pellant, M., P. Shaver, D.A. Pyke, and J.E. Herrick. 2005. Interpreting indicators of rangeland health, version 4. Technical Reference 1734-6. U.S. Department of the Interior, Bureau of Land Management, National Science and Technology Center, Denver, CO. BLM/WO/ST-00/001+1734/REV05. 122 pp. www.blm.gov/nstc/library/techref.htm
Portilla Pinzón, D., Barragán Hernández, W.A., Carvajal Bazurto, C.T., Cajas Girón, Y. S. y Rivero Espitia, S.T. (2015). Establecimiento de sistemas silvopastoriles para la región Caribe. Corpoica. https://www.researchgate.net/publication/312164417_Establecimiento_de_sistemas_silvopastoriles_para_la_region_Caribe DOI: https://doi.org/10.21930/978-958-740-196-7
Rabot, E., Wiesmeier, M., Schlüter, S. y Vogel, H.J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122-137. https://doi.org/10.1016/j.geoderma.2017.11.009 DOI: https://doi.org/10.1016/j.geoderma.2017.11.009
Reinhart, K.O., Nichols, K.A., Petersen, M. y Vermeire, L.T. (2015). Soil aggregate stability was an uncertain predictor of ecosystem functioning in a temperate and semiarid grassland. Ecosphere, 6(11), 1-16. https://doi.org/10.1890/ES15-00056.1 DOI: https://doi.org/10.1890/ES15-00056.1
Santiago-Hernández, F., López-Ortiz, S., Ávila-Reséndiz, C., Jarillo-Rodríguez, J., Pérez-Hernández, P. y Guerrero-Rodríguez, J.D (2016). Physiological and production responses of four grasses from the genera Urochloa and Megathyrsus to shade from Melia azedarach L. Agroforestry Systems, 90(2), 339-349. https://doi.org/10.1007/s10457-015-9858-y DOI: https://doi.org/10.1007/s10457-015-9858-y
Silveira Júnior, O., dos Santos, A.C., Dias Rodrigues, M.O., Dias Rodrigues, M. O. y Martins Alencar, N. (2017). Productive efficiency of mombasa grass in silvopastoral system under pasture deferment and nitrogen fertilizer. Semina: Ciências Agrárias, 38(5),3307-3318. https://www.researchgate.net/publication/320342587_Productive_efficiency_of_mombasa_grass_in_silvopastoral_system_under_pasture_deferment_and_nitrogen_fertilizer DOI: https://doi.org/10.5433/1679-0359.2017v38n5p3307
SOIL SURVEY LABORATORY (SSL). 1996. Soil survey laboratory methods manual. Soil survey investigations report No. 42, version 3.0. United States Department of Agriculture (USDA). 693 p. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054247
Tarrasón, D., Ravera, F., Reed, M.S., Dougill, A.J. y Gonzalez, L. (2016). Land degradation assessment through an ecosystem services lens: Integrating knowledge and methods in pastoral semi-arid systems. Journal of Arid Environments, 124, 205-213. https://doi.org/10.1016/j.jaridenv.2015.08.002 DOI: https://doi.org/10.1016/j.jaridenv.2015.08.002
Ussiri, D.A.N. y Lal, R. (2005). Carbon sequestration in reclaimed minesoils. Critical Reviews in Plant Sciences, 24(3), 151-165. https://doi.org/10.1080/07352680591002147 DOI: https://doi.org/10.1080/07352680591002147
Vides-Borrell, E., Porter-Bolland, L., Ferguson, B.G., Gasselin, P., Vaca, R., Valle-Mora, J. y Vandame, R. (2019). Polycultures, pastures and monocultures: Effects of land use intensity on wild bee diversity in tropical landscapes of southeastern Mexico. Biological Conservation, 236, 269-280. https://doi.org/10.1016/j.biocon.2019.04.025 DOI: https://doi.org/10.1016/j.biocon.2019.04.025
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Claudia Maricelel Ipaz Cuastumal, Luis F. Gómez-Ramírez, José L. Tauta-Muñoz. (2023). Productividad hídrica de Megathyrsus maximus cv bajo fertirriego en un suelo con pH variable en el Caribe seco colombiano. Ingeniería y Competitividad, 25(3) https://doi.org/10.25100/iyc.v25i3.13019.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Acta Agronómica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.