Differential response of photosynthetic activity, leaf nutrient content and yield to long-term drought in cacao clones
Respuesta diferencial de la actividad fotosintética, contenido de nutrientes en las hojas y producción en periodos largos de sequía en clones de cacao
DOI:
https://doi.org/10.15446/acag.v70n3.92252Palabras clave:
Cacao, Chlorophyll fluorescence, Photochemical protection, Photosynthesis, Water deficit (en)Cacao, Fluorescencia de la clorofila, Protección fotoquímica, Fotosíntesis, Déficit hídrico (es)
Descargas
Cacao (Theobroma cacao L.) is not frequently cropped in water limited environments, however it is cultivated in several drought-prone regions, where soil water is gradually depleted on an annual cycle. In regions where cacao is subjected to long periods without precipitation, the physiological responses under field conditions may differ between cacao clones. Evaluation of these responses are required to select potential clones that could be used for breeding programs in the context of future climatic scenarios. In order to identify physiological and yield responses to drought of 10 Ecuadorian cacao clones, relative leaf water content (RWC), CO2 assimilation rate (A), transpiration (E), stomatal conductance (gs), water use efficiency (WUE), relative quantum yield of photosystems II (ΦPSII), non-photochemical quenching (NPQ), leaf nutrient content (N, P K, Ca, and Mg) and yield were assessed during the dry (DS) and rainy seasons (RS). On average, A and E decreased by 33 and 22 %, respectively under drought, whereas WUE was higher during RS. Clones exhibited an increase in NPQ during DS, suggesting greater energy dissipation. Clones showed differences in macronutrient content and in most cases drought caused a reduction in Ca and Mg content. Two groups were established according to yield: one which maintained higher yields during RS, while the other had higher yields during drought. This offers strategic alternative in order to maintain a relatively high yield throughout the year with combination of clones in the plantations.
El cacao (Theobroma cacao L.) no se cultiva con frecuencia en ambientes donde existen limitaciones hídricas, sin embargo, se encuentra cultivado en algunas regiones propensas a la sequía, donde el agua del suelo se agota gradualmente en un ciclo anual. En regiones donde el cacao está sujeto a largos períodos sin precipitación, las respuestas fisiológicas en condiciones de campo pueden diferir entre los clones de cacao. Por ello, se requiere la evaluación de estas respuestas para seleccionar clones potenciales que podrían usarse para programas de mejoramiento en el contexto de escenarios climáticos futuros. Con el fin de identificar la respuesta fisiológica y de rendimiento a la sequía de 10 clones de cacao ecuatorianos, se evaluó el contenido relativo de agua foliar (RWC), la tasa de asimilación de CO2 (A), la transpiración (E), la conductancia estomática (gs), la eficiencia en el uso del agua (WUE), el rendimiento cuántico del fotosistemas II (ΦPSII), el coeficiente de extinción no fotoquímica (NPQ), el contenido de nutrientes en la hoja (N, P K, Ca y Mg) y la producción durante las estaciones seca y lluviosa. En promedio, A y E disminuyeron en un 33 y 22 %, respectivamente, durante la sequía, mientras que el WUE fue mayor durante la temporada de lluvias. Los clones mostraron un aumento de NPQ durante la sequía, lo que sugiere una mayor disipación de energía. Los clones mostraron diferencias en el contenido de macronutrientes y en la mayoría de los casos la sequía provocó una reducción en el contenido de Ca y Mg. Se establecieron dos grupos según rendimiento: uno que mantuvo mayores rendimientos durante la época de lluvias, mientras que el otro tuvo mayores rendimientos durante la sequía. Esto ofrece una alternativa estratégica para mantener un rendimiento relativamente alto durante todo el año con la combinación de clones en las plantaciones.
Referencias
Acheampong, K., Daymond, A.J., Yeboah, A., & Hadley, P. (2018). Improving field establishment of cacao (Theobroma cacao) through mulching; irrigation and shading. Experimental Agriculture, 55(6), 898-912. https://www.cambridge.org/core/journals/experimental-agriculture/article/abs/improving-field-establishment-of-cacao-theobroma-cacao-through-mulching-irrigation-and-shading/6B4EEAE84195B22BA39067A27C5692F6 DOI: https://doi.org/10.1017/S0014479718000479
Acheampong, K., Hadley P., & Daymond, A.J. (2013). Photosynthetic activity and early growth of four cacao genotypes as influenced by different shade regimes under west African dry and wet season conditions. Experimental Agriculture, 49(1), 31-42. https://doi.org/10.1017/S0014479712001007 DOI: https://doi.org/10.1017/S0014479712001007
Almeida, A.A., Brito, R.C.T., Aguilar, M.A.G., & Valle, R.R. (2002). Water relation’s aspects of Theobroma cacao L. clones. Agrotrópica, 14, 35-44. https://www.researchgate.net/publication/303146788_Water_relations'_aspects_of_Theobroma_cacao_L_clones
Almeida, A.A.F., Gomes, F.P., Araujo, R.P., Santos, R.C., & Valle, R.R. (2014). Leaf gas exchange in species of the Theobroma genus. Photosynthetica, 52(1), 16-21. https://doi.org/10.1007/s11099-013-0048-8 DOI: https://doi.org/10.1007/s11099-013-0048-8
Araque, O., Jaimez, R.E., Tezara, W., Coronel, I., Urich, R., & Espinoza, W. (2012). Comparative photosynthesis; water relations; growth and survival rates in juvenile Criollo cacao cultivars (Theobroma cacao) during dry and wet seasons. Experimental Agriculture, 48(4), 513–522. https://www.cambridge.org/core/journals/experimental-agriculture/article/abs/comparative-photosynthesis-water-relations-growth-and-survival-rates-in-juvenile-criollo-cacao-cultivars-theobroma-cacao-during-dry-and-wet-seasons/DBA8BD139479E43AC1DD4828D992F0F1 DOI: https://doi.org/10.1017/S0014479712000427
Ávila-Lovera, E., Coronel, I., Jaimez, R., Urich, R., Pereyra, G., Araque, O., Chacón, I., & Tezara, W. (2016). Ecophysiological traits of adult trees of Criollo cocoa cultivars (Theobroma cacao L.) from a germplasm bank in Venezuela. Experimental Agriculture, 52(1), 137-153. https://doi.org/10.1017/S0014479714000593 DOI: https://doi.org/10.1017/S0014479714000593
Baligar, V.C., Bunce, J.A., Machado, R.C.R., & Elson, M.K. (2008). Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica, 46(2), 216-221. https://doi.org/10.1007/s11099-008-0035-7 DOI: https://doi.org/10.1007/s11099-008-0035-7
Carr, M.K.V., & Lockwood, G. (2011). The water relations and irrigation requirements of cocoa (Theobroma cacao L.): a review. Experimental Agriculture, 47(4), 653-676 https://doi.org/10.1017/S0014479711000421 DOI: https://doi.org/10.1017/S0014479711000421
Chaves, M.M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanism from whole plant to cell. Annals of Botany, 103(4), 551-560. https://doi.org/10.1093/aob/mcn125 DOI: https://doi.org/10.1093/aob/mcn125
De Almeida, J., Herrera, A., & Tezara, W. (2018). Phenotypic plasticity to photon flux density of physiological, anatomical and growth traits in a modern Criollo cocoa clone. Physiologia Plantarum, 166(3), 821-832. https://doi.org/10.1111/ppl.12840 DOI: https://doi.org/10.1111/ppl.12840
De Almeida, J., Tezara, W., & Herrera, A. (2016). Physiological responses to drought and experimental water deficit and waterlogging of four clones of cocoa (Theobroma cacao L.) selected for cultivation in Venezuela. Agricultural Water Management, 171, 80-88. https://doi.org/10.1016/j.agwat.2016.03.012 DOI: https://doi.org/10.1016/j.agwat.2016.03.012
Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R., Dunn, R.J.H., Willett, K.M., Aguilar, E., Brunet, M., & Kitching, S. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research Atmospheres, 118(5), 2098-2118. https://doi.org/10.1002/jgrd.50150 DOI: https://doi.org/10.1002/jgrd.50150
Farooq, M., Hussain, M., Wahid, A., & Siddique, K.H.M. (2012). Drought stress in plants: an overview. In R. Aroca (Ed.), Plant Response to Drought Stress (pp. 1-36). Springer. https://doi.org/10.1007/978-3-642-32653-0_1 DOI: https://doi.org/10.1007/978-3-642-32653-0_1
Gessler, A., Schaub, M., & McDowell, N.G. (2016). The role of nutrients in drought-induced tree mortality and recovery. New Phytologist, 214(2), 513-520. https://doi.org/10.1111/nph.14340 DOI: https://doi.org/10.1111/nph.14340
Gilliham, M., Dayod, M., Hocking, B.J., Xu, B., Conn, S.J., Kaiser, B.N., Leigh, R.A., & Tyerman, S.D. (2011). Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany, 62(7), 2233-2250. https://doi.org/10.1093/jxb/err111 DOI: https://doi.org/10.1093/jxb/err111
Guo, W., Nazim, H., Liang, Z., & Ang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4(2), 83-91. https://doi.org/10.1016/j.cj.2015.11.003 DOI: https://doi.org/10.1016/j.cj.2015.11.003
Jaimez, R.E., Amores Puyutaxi, F., Vasco, A., Loor, R.G., Quijano, G., Tarqui, O., Jimenez, J.C., & Tezara, W. (2018). Photosynthetic response to low and high light of cacao growing without shade in an area of low evaporative demand. Acta Biológica Colombiana, 23(1), 95-103. https://doi.org/10.15446/abc.v23n1.64962 DOI: https://doi.org/10.15446/abc.v23n1.64962
Lahive, F., Hadley, P., & Daymond, A.J. (2018). The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica, 56(3), 911-920. https://doi.org/10.1007/s11099-017-0743-y DOI: https://doi.org/10.1007/s11099-017-0743-y
Lawlor, D., & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany, 103(4), 561-579. https://doi.org/10.1093/aob/mcn244 DOI: https://doi.org/10.1093/aob/mcn244
Moser, G., Leuschner, C., Herte, L.D., lscher, D.; Kohler, M., Leitner, D., Michalzik, B., Prihastanti, E., Tjitrosemito, S., & Schwendenmann, L. (2010). Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agroforestry Systems, 79, 171-187. https://doi.org/10.1007/s10457-010-9303-1 DOI: https://doi.org/10.1007/s10457-010-9303-1
Puentes Paramo, Y.J., Goméz Carabalí, A., & Menjivar Flores, J.C. (2016). Influence of the relationship among nutrients on yield of cocoa (Theobroma cacao L.) clones. Acta Agronómica, 65(2), 176-182. http://dx.doi.org/10.15446/acag.v65n2.47387 DOI: https://doi.org/10.15446/acag.v65n2.47387
Ofori, A., Konlan, S., Dadzie, M.A., & Amoah, F.M. (2014). Genotypic performance of cocoa (Theobroma cacao L.) during establishment under natural drought stress. Journal of Crop Improvement, 28(6), 804-824. https://doi.org/10.1080/15427528.2014.947529 DOI: https://doi.org/10.1080/15427528.2014.947529
Rouphael, Y., Cardarelli, M., Schwarz, D., Fraken, P., & Colla, G. (2012). Effects of drought on nutrient uptake and assimilation in vegetable crops. In R. Aroca (Ed.), Plant responses to drought stress (pp. 171–195). Springer. https://doi.org/10.1007/978-3-642-32653-0_7 DOI: https://doi.org/10.1007/978-3-642-32653-0_7
Santos, I.C., Furtado De Almeida, A.A., Anher, D., Da Conceiçao, A.S., Pirovani, C.P., Pires, J.L., Valle, R.R., & Baligar, V.C. (2014). Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. Plos One, 9(12), e115746. https://doi.org/10.1371/journal.pone.0115746 DOI: https://doi.org/10.1371/journal.pone.0115746
Suárez Salazar, J.C., Melgarejo, L.M., Cassanoves, F., Di Rienzo, J.A., DaMatta, F.M. & Armas, C. (2018). Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombia Amazon. Plos One, 13(11), e0206149. https://doi.org/10.1371/journal.pone.0206149 DOI: https://doi.org/10.1371/journal.pone.0206149
Tang, N., Li, Y., & Chen, L.S. (2012). Magnesium deficiency-induced impairment of photosynthesis in leaves of fruiting Citrus reticulata trees accompanied by up-regulation of antioxidant metabolism to avoid photo-oxidative damage. Journal of Plant Nutrition and Soil Science, 175(5), 784-793. https://doi.org/10.1002/jpln.201100329 DOI: https://doi.org/10.1002/jpln.201100329
Tezara, W., Pereyra, G., Ávila-Lovera, E., & Herrera, A. (2020). Variability in physiological responses of Venezuelan cacao to drought. Experimental Agriculture, 56(3), 407-421. https://doi.org/10.1017/S0014479720000058 DOI: https://doi.org/10.1017/S0014479720000058
Tezara, W., Mitchell, V.J., Driscoll, S.D., & Lawlor, D.W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401, 914-917. https://doi.org/10.1038/44842 DOI: https://doi.org/10.1038/44842
Tezara, W., De Almeida, J., Valencia, E., Cortes, J.L., & Bolaños, M.J. (2015). Actividad fotoquímica de clones élites de cacao (Theobroma cacao L) ecuatoriano en el norte de la provincia Esmeraldas. Revista Científica Interdisciplinaria Investigación y Saberes, IV(3), 37-52. https://www.researchgate.net/publication/303459609_ACTIVIDAD_FOTOQUIMICA_DE_CLONES_ELITES_DE_CACAO_THEOBROMA_CACAO_L_ECUATORIANO_EN_EL_NORTE_DE_LA_PROVINCIA_ESMERALDAS_PHOTOCHEMICAL_ACTIVITY_OF_ELITES_CLONES_OF_ECUATORIAN_CACAO_THEOBROMA_CACAO_L_AT_NO
Viets, F.G. (1972). Water deficits and nutrient availability. In T.T. Kozolowski (Ed.), Plant responses and control of water balance (pp. 217-237). Academic Press. https://doi.org/10.1016/B978-0-12-424153-4.50012-6 DOI: https://doi.org/10.1016/B978-0-12-424153-4.50012-6
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Jesús A. Viloria, Barlin O. Olivares, Pedro García, Franklin Paredes-Trejo, Aníbal Rosales. (2023). Mapping Projected Variations of Temperature and Precipitation Due to Climate Change in Venezuela. Hydrology, 10(4), p.96. https://doi.org/10.3390/hydrology10040096.
2. Ramón E. Jaimez, Luigy Barragan, Miguel Fernández-Niño, Oswaldo J. Larreal B, Byron Flores, Maria Serrano. (2024). Pod Production Dynamics and Pod Size Distribution of Theobroma cacao L. Clone CCN 51 in Full Sunlight. International Journal of Agronomy, 2024, p.1. https://doi.org/10.1155/2024/4242270.
3. Juan J. REYES-PEREZ, Luis T. LLERENA-RAMOS, Víctor H. REYNEL CHILA, Juan A. TORRES-RODRIGUEZ, Saad FAROUK, Luis G. HERNANDEZ-MONTIEL, Wilmer TEZARA. (2022). Effect of Pectimorf on the rooting ability, and morpho-physiological trials of national cocoa (Theobroma cacao L.) under different substrates. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(3), p.12847. https://doi.org/10.15835/nbha50312847.
4. Luis Orozco-Aguilar, Arlene Lopez-Sampson, Rolando H. Cerda, Fernando Casanoves, Oscar Ramirez-Argueta, Javier Diaz Matute, Juan Carlos Suárez Salazar, Johanna Rüegg, Stephane Saj, Joaquin Milz, Ulf Schneidewind, Argenis Mora Garces, Eliana Baez Daza, Jairo Rojas Molina, Yeirme Jaimes Suarez, Genaro A. Agudelo-Castañeda, Olivier Deheuvels, Enelvi Brito Sosa, Jaime Hinojosa Gómez, Ramon E. Jaimez, Sophya Reyes Espinoza, Melanie Bordeaux, Carlos Caicedo Vargas, Leider Tinoco, Geover Peña Monserrate, Julian Perez Flores, Alfonso Azpeitia Morales, Cesar O. Arevalo-Hernandez, Enrique Arevalo Gardini, Luis E. Pocasangre, Osmary Araque, Athina Koutouleas, Eufemia Segura Magaña, Omar Dominguez, Paula Arenas, Lorena Sotopinto, Marisela Salgado-Mora, Antonio Gama-Rodrigues, Emanuela Gama-Rodrigues, Annelle Holder, Gideon Ramtahal, Pathmanathan Umaharan, Manfred Willy Muller, Fernando Texeira Mendes, Eduardo Somarriba. (2024). CacaoFIT: the network of cacao field trials in Latin America and its contribution to sustainable cacao farming in the region. Frontiers in Sustainable Food Systems, 8 https://doi.org/10.3389/fsufs.2024.1370275.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política sobre Derechos de autor:Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución, no comercial, sin derivados.
Es decir, que aún siendo la Revista Acta Agronómica de acceso libre, los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna y no debe ser usado con fines comerciales.