Publicado

2023-01-15

Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass

Beneficios de la urea líquida y un catalizador microbiano en la biomasa y el valor nutricional del pasto Mombasa

DOI:

https://doi.org/10.15446/acag.v71n1.99814

Palabras clave:

Biofertilizer, bromatological variables, nitrogen fertilizer, organic carbon, tropical forage (en)
Biofertilizante, carbono orgánico, fertilizante nitrogenado, forraje tropical, variables bromatológicas (es)

Descargas

Autores/as

During 2019, an experiment was conducted at the Agricultural Experiment Station in Isabela (Puerto Rico) on an Oxisol with previously well-stablished stands of cv. Mombasa. This experiment assessed the effects of a microbial catalyst (MC) and liquid urea 22-0-0 (LU) at a rate of 168 kg ha-1 (in split applications), a mixture of LU+MC and a control on aboveground biomass, root biomass, nutritional value, nitrogen use efficiency and soil parameters on cv. Mombasa at 35-day (d) harvests during six harvests. The study was established in a completely randomized design with four replicates. The effects of LU and MC on belowground (root) biomass were determined by collecting samples in 1 m2 to determine the yield and chemical composition. Soil samples were collected at 15 cm depth using a soil corer at the first and 6th harvest from each plot to assess organic carbon (OC), total nitrogen (TN), pH, macronutrients, and cation exchange capacity (CEC). The results showed that aboveground biomass doubled using LU (2369 kg DM ha-1) compared to the control and MC (1100 kg DM ha-1). Crude protein (CP) was 10.1 % using LU. Neutral Detergent fiber was 70 % for the control, 74.2 % when LU was used, and around 40 % for acid detergent fiber (ADF) for any treatment. Overall, there were no significant effects of treatments on OC and organic matter percentages, P, N, Ca, Mg, and CEC. In conclusion, LU is an excellent source of N for Mombasa, but shorter harvest frequencies may be required to improve the fiber quality of Mombasa.

Durante el año 2019 se llevó a cabo un experimento en la Estación Experimental Agrícola de Isabela (Puerto Rico) en un Oxisol con un pastizal previamente establecido con el cv. Mombasa. El objetivo de este experimento fue evaluar el efecto de un catalizador microbiano (CM) y la urea líquida 22-0-0 (UL) a una tasa de 168 kg ha-1 (en aplicaciones subdivididas), una mezcla de MC+UL y un control sobre la biomasa aérea, biomasa de la raíz, el valor nutricional, la eficiencia de uso de nitrógeno y parámetros del suelo sobre el cv. Mombasa a los 35 días de cosecha durante seis periodos de cosecha. El estudio fue establecido en un diseño completamente aleatorizado con cuatro replicas. Los efectos de CM y UL sobre la biomasa aérea y la producción de raíces fueron determinadas mediante la recolección de muestras en 1 m2 para determinar el rendimiento y la composición química. Las muestras de suelo fueron recolectadas a 15 cm de profundidad usando un barreno en la 1era y 6ta cosecha en cada unidad experimental para evaluar el carbono orgánico en el suelo (CO), el nitrógeno total (NT), el pH, los macronutrientes y la capacidad de intercambio catiónico (CIC). Los resultados mostraron que el rendimiento de la biomasa aérea fue mayor cuando se usó UL (2369 kg MS ha-1) comparado con el control y el CM (1100 kg MS ha-1). La proteína cruda (PC) fue de 10.1 % usando UL. La fibra detergente neutra (FDN) fue de 70 % para el control y 74.2 % cuando se usó UL, y alrededor del 40 % para la fibra detergente ácida (FDA) durante todos los tratamientos. No se encontraron efectos significativos de los tratamientos sobre el porcentaje de CO y materia orgánica, P, N, Ca, Mg y CIC. En conclusión, la UL es una excelente fuente de N para el pasto guinea local, pero es posible que se necesiten frecuencias de cosecha más cortas para mejorar la calidad de la fibra.

Referencias

Abbasi, I. H. R., Abbasi, F., Abd El-Hack, M. E., Abdel-Latif, M. A., Soomro, R. N., Hayat, K., Mohamed, M. A. E., Bodinga, B. M., Yao, J. and Cao, Y. (2018). Critical analysis of excessive utilization of crude protein in ruminants ration: Impact on environmental ecosystem and opportunities of supplementation of limiting amino acids—a review. Environmental Science and Pollution Research, 25(1), 181-190. https://doi.org/10/gcvt3h DOI: https://doi.org/10.1007/s11356-017-0555-4

Barros da Silva, A., Brandão Carvalho, C. A., de Almeida Pires, C., de Carvalho Almeida, J. C. and de Deus Nepomuceno, D. (2018). Effects of nitrogen dosage and urea source on morphological composition and forage accumulation in massai grass. Semina: Ciencias Agrarias, 39(4), 1407–1416. https://doi.org/10.5433/1679-0359.2018v39n4p1407 DOI: https://doi.org/10.5433/1679-0359.2018v39n4p1407

Beinroth, F. (2000). Land Resources for Forage Production in the Tropics. 1st ed., CRC Press. DOI: https://doi.org/10.1201/9781420038781.sec1

Bittencourtt Caldas, M., Pereira Diniz, J., da Silva, A. J., da Silva Baio, S. P., Rezende Zuffo Borges, M. C., Batista Nogueira, K., Garcia Roque, C. and Teodoro, P. E. (2020). Forms of nitrogen fertilizer application in Panicum maximum. Bioscience Journal, 36(1), 23–29. https://doi.org/10.14393/BJ-v36n1a2020-39714 DOI: https://doi.org/10.14393/BJ-v36n1a2020-39714

Castagnara, D. D., Mesquita, E. E., Neres, M. A., Oliveira, P., Deminicis, B. B. and Bamberg, R. (2011). Nutritional value and structural characteristics of tropical grasses under nitrogen fertilization. Archivos de Zootecnia, 60(232), 931–942. https://dx.doi.org/10.4321/S0004-05922011000400010 DOI: https://doi.org/10.4321/S0004-05922011000400010

de Oliveira da Silva, R., Rocha Chaves Miotto, F., Neuman Miranda Neiva, J., Monteiro da Silva, L. F., Barros de Freitas, I., Araújo, V. L. and Restle, J. (2020). Effects of increasing nitrogen levels in Mombasa grass on pasture characteristics, chemical composition, and beef cattle performance in the humid tropics of the Amazon. Tropical Animal Health and Production, 52(6), 3293–3300. https://doi.org/10.1007/s11250-020-02360-0 DOI: https://doi.org/10.1007/s11250-020-02360-0

Delevatti, L. M., Cardoso, A. S., Barbero, R. P., Leite, R. G., Romanzini, E. P., Ruggieri, A. C. and Reis, R. A. (2019). Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-44138-x DOI: https://doi.org/10.1038/s41598-019-44138-x

Dobermann, A. R. (2005). Nitrogen Use Efficiency - State of the Art. Agronomy & Horticulture - Faculty Publications. 6, 1-16. https://digitalcommons.unl.edu/agronomyfacpub/316

Escarela, C. M., Pietroski, M., de Mello Prado, R., Silva Campos, C. N. and Caione, G. (2017). Effect of nitrogen fertilization on productivity and quality of Mombasa forage (Megathyrsus maximum cv. Mombasa). Acta Agronómica, 66(1), 42–48. https://doi.org/10.15446/acag.v66n1.53420 DOI: https://doi.org/10.15446/acag.v66n1.53420

Estrada Álvarez, J., Villa Duque, N. and Henao Uribe, F. J. (2015). Digestibility of a sugarcane silage with pig manure, and its evaluation in a double-purpose cattle production system. Pastos y Forrajes, 38(4), 425–443. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942015000400006&lng=es&tlng=es

Galindo, F., Buzetti, S., Teixeira Filho, M.C., Dupas, E. and Ziolkowski Ludkiewicz, M. G. (2017). Application of different nitrogen doses to increase nitrogen efficiency in Mombasa guinegrass (Panicum maximum cv. mombasa) at dry and rainy seasons. Australian Journal of Crop Science, 11(12), 1657–1664. https://doi.org/10.21475/ajcs.17.11.12.pne907 DOI: https://doi.org/10.21475/ajcs.17.11.12.pne907

Galindo, F. S., Beloni, T., Buzetti, S., Teixeira Filho, M. C., Dupas, E. and Ziolkowski Ludkiewicz, M. G. (2018). Technical and economic viability and nutritional quality of mombasa guinea grass silage production. Acta Scientiarum. Agronomy, 40(1), e36395. https://doi.org/10.4025/actasciagron.v40i1.36395 DOI: https://doi.org/10.4025/actasciagron.v40i1.36395

Hassan, A., Zewdu T., Urge, M. and Fikru, S. (2015). Effect of Nitrogen Fertilizer Application on Nutritive Value of Cenchrus ciliaris and Panicum Maximum Grown under Irrigation at Gode, Somali Region. Journal of Nutrition & Food Sciences, s11, s11005. https://doi.org/10.4172/2155-9600.s11-005 DOI: https://doi.org/10.4172/2155-9600.S11-005

Hodge, A. (2005). Nitrogen in Soils: Plant Uptake. Encyclopedia of Soils in the Environment, 39-46. https://doi.org/10.1016/B0-12-348530-4/00159-4 DOI: https://doi.org/10.1016/B0-12-348530-4/00159-4

Hare, M. D., Phengphet, S., Songsiri, T. and Sutin, N. (2015). Effect of nitrogen on yield and quality of Panicum maximum cvv. Mombasa and Tanzania in Northeast Thailand. Tropical Grasslands - Forrajes Tropicales, 3(1), 27–33. https://doi.org/10.17138/tgft(3)27-33 DOI: https://doi.org/10.17138/TGFT(3)27-33

Li, X. G., Jia, B., Lv, J., Ma, Q., Kuzyakov, Y. and Li, F. (2017). Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 112, 47–55. https://doi.org/10.1016/j.soilbio.2017.04.018 DOI: https://doi.org/10.1016/j.soilbio.2017.04.018

Maltas, A., Kebli, H., Oberholzer, H. R., Weisskopf, P. and Sinaj, S. (2018). The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degradation and Development, 29(4), 926–938. https://doi.org/10.1002/ldr.2913 DOI: https://doi.org/10.1002/ldr.2913

Mariano, E., de Sant Ana Filho, C. R., Bortoletto-Santos, R., Bendassolli, J. A. and Trivelin, P. C. O. (2019). Ammonia losses following surface application of enhanced-efficiency nitrogen fertilizers and urea. Atmospheric Environment, 203, 242–251. https://doi.org/10.1016/j.atmosenv.2019.02.003 DOI: https://doi.org/10.1016/j.atmosenv.2019.02.003

Martínez Dalmau, J., Berbel, J. and Ordóñez Fernández, R. (2021). Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability, 13(10), 5625. https://doi.org/10.3390/su13105625 DOI: https://doi.org/10.3390/su13105625

Muñoz, M. A., Lugo, W. I., Santiago, C., Matos, M., Ríos, S. and Lugo, J. (2018). Taxonomic classification of the soils of Puerto Rico, 2017. Agricultural Experiment Station, Bulletin 313. https://www.uprm.edu/tamuk/wp-content/uploads/sites/299/2019/06/Taxonomic_classification_soils_PR_2018_reduced.pdf

Nelson, D.W. and Sommers, L.E. (1996). Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis: Part 3, Chemical Methods, 5.3. https://doi.org/10.2136/sssabookser5.3.c34 DOI: https://doi.org/10.2136/sssabookser5.3.c34

Norman, H.C., Humphries, A.W., Hulm, E., Young, P., Hughes, S.J., Rowe, T., Peck, D.M. and Vercoe, P.E. (2021). Productivity and nutritional value of 20 species of perennial legumes in a low-rainfall Mediterranean-type environment in southern Australia. Grass and Forage Science, 76(1), 134-158. https://doi.org/10.1111/gfs.12527 DOI: https://doi.org/10.1111/gfs.12527

Norton, B.E., Barnes, M. and Teague, R. (2013). Grazing Management Can Improve Livestock Distribution: Increasing accessible forage and effective grazing capacity. Rangelands, 35(5), 45-51. https://doi.org/10.2111/RANGELANDS-D-13-00016.1 DOI: https://doi.org/10.2111/RANGELANDS-D-13-00016.1

Olivastro Teixeira, S., Olivastro Teixeira, R., Bezerra dos Santos, V., de Carvalho, M. A. C. and Mitsuo Yamashita, O. (2018). Doses de fósforo e nitrogênio na produção de Brachiaria hibrida cv. Mulato II. Revista Ceres, 65(1), 28–34. https://doi.org/10.1590/0034737X201865010005 DOI: https://doi.org/10.1590/0034-737x201865010005

Perera, R.S., Cullen, B.R. and Eckard, R.J. (2019). Growth and Physiological Responses of Temperate Pasture Species to Consecutive Heat and Drought Stresses. Plants 8(7), 227. https://doi.org/10.3390/plants8070227 DOI: https://doi.org/10.3390/plants8070227

Prosser, J.I. (2005). Nitrogen in Soils: Nitrification. Encyclopedia of Soils in the Environment, 31-39. https://doi.org/10.1016/B0-12-348530-4/00512-9 DOI: https://doi.org/10.1016/B0-12-348530-4/00512-9

Reimer, M., Hartmann, T. E., Oelofse, M., Magid, J., Bünemann, E. K. and Möller, K. (2020). Reliance on Biological Nitrogen Fixation Depletes Soil Phosphorus and Potassium Reserves. Nutrient Cycling in Agroecosystems, 118(3), 273–291. https://doi.org/10.1007/s10705-020-10101-w DOI: https://doi.org/10.1007/s10705-020-10101-w

Sakiroglu, M., Dong, C., Hall, M. B., Jungers, J. and Picasso, V. (2020). How does nitrogen and forage harvest affect belowground biomass and nonstructural carbohydrates in dual-use Kernza intermediate wheatgrass? Crop Science, 60(5), 2562-2573. https://doi.org/10.1002/csc2.20239 DOI: https://doi.org/10.1002/csc2.20239

SAS Institute Inc. (2021). SAS/IML® 14.1 User’s Guide. Cary, NC: SAS Institute INC. http://support.sas.com/documentation/cdl/en/imlsug/68152/HTML/default/viewer.htm#titlepage.htm

Salinas, J. G. and Valencia G., C. A., 1983. Oxisoles y ultisoles en America Latina tropical. Cali, Colombia. Centro Internacional de Agricultura Tropical (CIAT). https://cgspace.cgiar.org/handle/10568/54508

Sparks, D. L., Page A. L., Helmke, P.A., Loeppert R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Summer M. E. (1996). Methods of Soil Analysis: Part 3 Chemical methods, 5.3. Soil Science Society of America, Inc., American Society of Agronomy, Inc. https://doi.org/10.2136/sssabookser5.3 DOI: https://doi.org/10.2136/sssabookser5.3

Sumiyoshi, Y., Crow, S. E., Litton, C. M., Deenik, J. L., Taylor, A. D., Turano, B. and Ogoshi, R. (2016). Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics. GCB Bioenergy, 9(4), 694–709. https://doi.org/10.1111/gcbb.12379 DOI: https://doi.org/10.1111/gcbb.12379

Sun, X., Longhurst, B., Luo, J. and Luo, N. (2008). Fertiliser Nitrogen and Factors Affecting Pasture Responses. The Open Agriculture Journal, 2(1), 35–42. https://doi.org/10.2174/1874331500802010035 DOI: https://doi.org/10.2174/1874331500802010035

USDA, 2014. Informe Anual de la Oficina para la Reglamentación de la Industria Lechera. Instituto de Estadísticas de Puerto Rico. https://estadisticas.pr/en/inventario-de-estadisticas/informe-anual-de-la-oficina-para-la-reglamentacion-de-la-industria-lechera

Teague, R., Provenza, F., Kreuter, U., Steffens, T. and Barnes, M. (2013). Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? Journal of Environmental Management, 128, 699-717. https://doi.org/10.1016/j.jenvman.2013.05.064 DOI: https://doi.org/10.1016/j.jenvman.2013.05.064

Van Soest, P. J. (1994). Nutritional ecology of the ruminant. 2a Ed. Cornell University Press. DOI: https://doi.org/10.7591/9781501732355

Vicente-Chandler, J. (1964). The Intensive Management of Tropical Forages in Puerto Rico. Agricultural Experiment Station. 187, 1-152. https://books.google.cl/books?id=Xql6HAAACAAJ

Zang, H., Wang, J. and Kuzyakov, Y. (2016). N fertilization decreases soil organic matter decomposition in the rhizosphere. Applied Soil Ecology, 108, 47–53. https://doi.org/10.1016/j.apsoil.2016.07.021 DOI: https://doi.org/10.1016/j.apsoil.2016.07.021

Zhang, S., Fang, Y., Luo, Y., Li, Y., Ge, T., Wang, Y., Wang, H., Yu, B., Song, X., Chen, J., Zhou, J., Li, Y. and Chang, S. X. (2021). Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. Science of the Total Environment, 801, 149717. https://doi.org/10/gpb2km DOI: https://doi.org/10.1016/j.scitotenv.2021.149717

Cómo citar

APA

Alquichire Rojas, S. L. y Valencia-Chin, E. (2023). Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass. Acta Agronómica, 71(1), 64–72. https://doi.org/10.15446/acag.v71n1.99814

ACM

[1]
Alquichire Rojas, S.L. y Valencia-Chin, E. 2023. Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass. Acta Agronómica. 71, 1 (ene. 2023), 64–72. DOI:https://doi.org/10.15446/acag.v71n1.99814.

ACS

(1)
Alquichire Rojas, S. L.; Valencia-Chin, E. Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass. Acta Agron. 2023, 71, 64-72.

ABNT

ALQUICHIRE ROJAS, S. L.; VALENCIA-CHIN, E. Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass. Acta Agronómica, [S. l.], v. 71, n. 1, p. 64–72, 2023. DOI: 10.15446/acag.v71n1.99814. Disponível em: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/99814. Acesso em: 19 ene. 2025.

Chicago

Alquichire Rojas, Shirley Lorena, y Elide Valencia-Chin. 2023. «Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass». Acta Agronómica 71 (1):64-72. https://doi.org/10.15446/acag.v71n1.99814.

Harvard

Alquichire Rojas, S. L. y Valencia-Chin, E. (2023) «Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass», Acta Agronómica, 71(1), pp. 64–72. doi: 10.15446/acag.v71n1.99814.

IEEE

[1]
S. L. Alquichire Rojas y E. Valencia-Chin, «Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass», Acta Agron., vol. 71, n.º 1, pp. 64–72, ene. 2023.

MLA

Alquichire Rojas, S. L., y E. Valencia-Chin. «Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass». Acta Agronómica, vol. 71, n.º 1, enero de 2023, pp. 64-72, doi:10.15446/acag.v71n1.99814.

Turabian

Alquichire Rojas, Shirley Lorena, y Elide Valencia-Chin. «Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass». Acta Agronómica 71, no. 1 (enero 15, 2023): 64–72. Accedido enero 19, 2025. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/99814.

Vancouver

1.
Alquichire Rojas SL, Valencia-Chin E. Benefits of liquid urea and a microbial catalyst on biomass and the nutritional value of Mombasa grass. Acta Agron. [Internet]. 15 de enero de 2023 [citado 19 de enero de 2025];71(1):64-72. Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/99814

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

245

Descargas

Los datos de descargas todavía no están disponibles.