Publicado

2025-03-14

EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE)

Effect of Nanopriming with Magnesium Oxide on the development of Vigna unguiculata (Fabaceae)

DOI:

https://doi.org/10.15446/abc.v30n1.113233

Palabras clave:

Vigna unguiculata, nanoprimming, desarrollo, óxido de magnesio (es)
Vigna unguiculata, nanopriming, development, magnesium oxide (en)

Descargas

Autores/as

En este trabajo se evaluó el efecto de nanopartículas de óxido de magnesio (MgO-NPs) sobre el desarrollo de Vigna unguiculata. Para ello se sintetizaron, por una ruta química, MgO-NPs que se caracterizaron utilizando: espectroscopía IR, difracción de rayos X (DRX), microscopía electrónica de barrido (MEB) y espectroscopía EDAX. Los resultados indicaron que la única fase cristalina presente en el sólido sintetizado fue MgO tipo periclasa, con alta pureza química y tamaño nanométrico (< 100 nm). Al evaluar el efecto de MgONPs sobre V. unguiculata, se observó que redujeron el número de días a floración (hasta 70.5 ± 6.0 días) e incrementaron el número acumulado de vainas por planta (hasta 7.0 ±0.8 vainas). Además, las nanopartículas de este óxido provocaron disminución en la masa seca de tallos. De acuerdo con los resultados, las MgO-NPs suministradas a V. unguiculata mediante nanopriming, pueden llegar a ser una forma eficiente de proporcionar un elemento esencial como el Mg, desempeñando así su función como nanofertilizante.

This work evaluated the effect of magnesium oxide nanoparticles (MgO-NPs) on the development of Vigna unguiculata. MgO-NPs were synthesized using a chemical route and characterized with IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and EDAX spectroscopy. The results indicated that the only crystalline phase present in the synthesized solid was periclase-type MgO, with high chemical purity and nanoscale size (< 100 nm). When evaluating the effect of MgO-NPs on V. unguiculata, it was observed that they reduced the number of days to flowering (up to 70.5 ± 6.0 days) and increased the accumulated number of pods per plant (up to 7.0 ± 0.8 pods). Additionally, these oxide nanoparticles caused a decrease in stem dry mass. According to the results, MgO-NPs supplied to V. unguiculata through nanopriming can become an efficient way to provide an essential element like Mg, thus serving their function as nanofertilizer.

 

Referencias

Abbass, J. A., Al-Zurfi, T. H., Hnoosh, L. J. H., Ali, A. A. and Abbas, A. A. (2020). Roles of spraying amino acids and chelated magnesium on growth, flowering and production of corms of Fressia hybrida. Scientific Papers Series B. Horticulture, 64(2), 281–285.

Agredo–Trochez, Y. A., Molano-Cabezas, A. C., Arciniegas- Grijalba, P. A. and Rodriguez-Paez, J. E. (2022). Nanoparticles of magnesium oxyhydroxide and copper oxide: Synthesis and evaluation of their in vitro fungicidal activity on the fungus Omphalia sp. Inorganic Chemistry Communications, 146. https://doi.org/10.1016/j.inoche.2022.110085

Aljanabi, H. A. Y. (2021). Effects of nano fertilizers technology on agriculture production. Annals of the Romanian Society for Cell Biology, 25(4), 6728–6739.

Al-Salhy, S. J. K. and Rasheed, A. A. (2020). Effect of mung bean seed priming methods and duration on seed germination on seed germination and seedling vigor. Plant Archives, 20(1), 27–31.

Aluko, O. O., Li, C., Wang, Q. and Liu, H. (2021). Sucrose utilization for improved crop yields: a review article. International Journal of Molecular Sciences, 22(9), 4704. https://doi.org/10.3390/ijms22094704

Amir, M., Prasad, D., Khan, F. A., Khan, A. and Ahmad, B. (2024). Seed priming: An overview of techniques, mechanisms, and applications. Plant Science Today, 11(1), 553-563.

Ammar, S. and Fievet, F. (2020). Polyol Synthesis: A versatile wet-chemistry route for the design and production of functional inorganic nanoparticles. Nanomaterials, 10(6), 1217. https://doi.org/10.3390/nano10061217

Arun, M. N., Hebbar, S. S., Bhanuprakash, K., Senthivel, T., Nair, A. K. and Pandey, D. P. (2020). Influence of seed priming and different irrigation levels on growth parameters of cowpea [Vigna unguiculata (L.) walp]. Legume Research, 43(1), 99–104. https://doi.org/10.18805/LR-3945

Belay, F., Gebreslasie, A. and Meresa, H. (2017). Agronomic performance evaluation of cowpea [Vigna unguiculata (L.) Walp] varieties in Abergelle District, Northern Ethiopia. Journal of Plant Breeding and Crop Science, 9(8), 139–143.

Boukar, O., Togola, A., Chamarthi, S., Belko, N., Ishikawa, H., Suzuki, K. and Fatokun, C. (2019). Cowpea [Vigna unguiculata (L.) Walp.] Breeding. In Al-Khayri, J., Jain, S. and Johnson, D. (eds) Advances in Plant Breeding Strategies: Legumes (pp. 201–243). Springer International. https://doi.org/10.1007/978-3-030-23400-3_6

Cakmak, I. (2013). Magnesium in crop production, food quality and human health. Plant and Soil, 368(1–2), 1–4. https://doi.org/10.1007/s11104-013-1781-2

Cowan, J. A. (2002). Structural and catalytic chemistry of magnesium-dependent enzymes. BioMetals, 15(3), 225–235. https://doi.org/10.1023/A:1016022730880

Cullity, B. D. and Stock, S. R. (2014). Elements of X-Ray diffraction. Tercera edicion. Pearson.

Dean, A. M., Voss, D. and Draguljić, D. (2017). Design and analysis of experiments (Segunda edicion). Cham-Suiza: Springer. https://doi.org/10.1007/978-3-319-52250-0

Estrada-Dominguez, V., Marquez-Quiroz, C., de la Cruz- Lazaro, E., Osorio-Osorio, R. and Sanchez-Chavez, E. (2018). Biofortificacion de frijol caupi (Vigna unguiculata L. Walp) con zinc: efecto en el rendimiento y contenido mineral. Revista Mexicana de Ciencias Agrícolas, 20, 4149–4160. https://doi.org/10.29312/remexca.v0i20.986

Farooq, M., Usman, M., Nadeem, F., Rehman, H. U., Wahid, A., Basra, S. M. A. and Siddique, K. H. M. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731–771. https://doi.org/10.1071/CP18604

Fujikawa, I., Takehara, Y., Ota, M., Imada, K., Sasaki, K., Kajihara, H., Sakai, S., Jogaiah, S. and Ito, S. ichi. (2021). Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. Journal of Biotechnology, 325, 100–108. https://doi.org/10.1016/j.jbiotec.2020.11.012

Ghorbanian, A. R., Khoshgoftarmanesh, A. H. and Zahedi, M. (2019). The effect of foliar-applied magnesium on root cell membrane H+-ATPase activity and physiological characteristics of sugar beet. Physiology and Molecular Biology of Plants, 25(5), 1273. https://doi.org/10.1007/S12298-019-00695-Z

Glotra, A., Singh, M. and Maneesha. (2023). Nanofertilizers: A review on the futuristic technology of nutrient management in agriculture. Agricultural Reviews, 44(2), 238–244. https://doi.org/10.18805/ag.R-2469

Granda-Ruiz, J. V., Cajas-Salazar, N. and Rodriguez-Paez, J. E. (2023). Magnesium oxyhydroxide nanoparticles: Synthesis, characterization and evaluation of their genotoxicity in Vicia faba L. Materials Science and Engineering: B, 298, 116896. https://doi.org/10.1016/j.mseb.2023.116896

Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z. and Chen, K. (2015). Magnesium stress signaling in plant: Just a beginning. Plant Signaling & Behavior, 10(3). https://doi.org/10.4161/15592324.2014.992287

Gutierrez-Pulido, H. y de la Vara-Salazar, R. (2012). Análisis y diseño de experimentos (3a ed.). Mc Graw Hill.

Hasanaklou, N. T., Mohagheghi, V., Hasanaklou, H. T., Ma’mani, L., Malekmohammadi, M., Moradi, F. and Dalvand, Y. (2023). Seed nano-priming using silica nanoparticles: effects in seed germination and physiological properties of Stevia rebaudiana Bertoni. Chemical and Biological Technologies in Agriculture, 10(1), 1–13. https://doi.org/10.1186/S40538-023-00445-0

Havlin, J. L., Tisdale, S. L., Nelson, W. R. and Beaton, J. D. (2017). Soil fertility and fertilizers: an introduction to nutrient management (octava edicion). Uttar Pradesh-India: Pearson.

Hawkes, P. W. and Spence, J. C. H. (2019). Springer handbook of microscopy (1a ed.; P. W. Hawkes and J. C. H. Spence, Eds.). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-00069-1

Hawkesford, M. J., Cakmak, I., Coskun, D., De Kok, L. J., Lambers, H., Schjoerring, J. K. and White, P. J. (2023). Functions of macronutrients. Marschner’s Mineral Nutrition of Plants, 201–281. https://doi.org/10.1016/B978-0-12-819773-8.00019-8

He, H., Jin, X., Ma, H., Deng, Y., Huang, J. and Yin, L. (2020). Changes of plant biomass partitioning, tissue nutrients and carbohydrates status in magnesium-deficient banana seedlings and remedy potential by foliar application of magnesium. Scientia Horticulturae, 268, 109377. https://doi.org/10.1016/j.scienta.2020.109377

Huo, H., Wei, S. and Bradford, K. J. (2016). DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences, 113(15). https://doi.org/10.1073/pnas.1600558113

Hussain, S., Hussain, S., Khaliq, A., Ali, S. and Khan, I. (2019). Physiological, biochemical, and molecular aspects of seed priming. In Hasanuzzaman, M. and Fotopoulos, V. (eds) Priming and pretreatment of seeds and seedlings (pp. 43–62). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_3

Instituto Geografico Agustin Codazzi. (2006). Métodos analíticos del laboratorio de suelos. IGAC.

Jaghdani, S., Jahns, P. and Trankner, M. (2021). Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization. Plant Science, 302, 110751. https://doi.org/10.1016/j.plantsci.2020.110751

Janeclare, W. W., Omami N, E., Opile W, R., Ochuodho O, J. and Oluko S, P. (2021). Effect of calcium and magnesium on flowering and fruiting of tomato (Lycopersicon esculentum Mill). International Journal of Research and Innovation in Applied Science, 2454–6194.

Kebede, E. and Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805. https://doi.org/10.1080/23311932.2020.1769805

Kumar, S., Rahman, S., Rahman, F. H. and Pramanik, S. (2021). Nanofertlizers-a potential alternative to chemical fertilizers. Agriculture & Environment, 2(6), 31–37.

Leon-Burgos, A. F., Beltran Cortes, G. Y., Barragan Perez, A. L. and Balaguera-Lopez, H. E. (2021). Distribucion de fotoasimilados en los organos vertederos de plantas Solanaceas, caso tomate y papa. Una revision. Ciencia y Agricultura, 18(3), 79–97. https://doi.org/10.19053/01228420.v18.n3.2021.13566

Li, G., Zhou, C., Yang, Z., Zhang, C., Dai, Q., Huo, Z. and Xu, K. (2022). Low nitrogen enhances apoplastic phloem loading and improves the translocation of photoassimilates in rice leaves and stems. Plant And Cell Physiology, 63(7), 991–1007. https://doi.org/10.1093/pcp/pcac066

Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/J.PBI.2009.04.003

Monteoliva, M. I., Ruiz, O. A. and Li, F. (2023). Editorial: Legumes and their microbiome in climate change mitigation. Frontiers in Plant Science, 14, 1–3. DOI: https://doi.org/10.3389/fpls.2023.1220535

Moreira, W. R., da Silva Bispo, W. M., Rios, J. A., Debona, D., Nascimento, C. W. A. and Rodrigues, F. A. (2015). Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae. Scientia Agricola, 72(4), 328–333. https://doi.org/10.1590/0103-9016-2014-0312

Oliveira, T. F., Santos, H. O. dos, Ribeiro, J. B., Pereira, W. V. S., Pereira, A. A. S. and Cunha Neto, A. R. da. (2022). Priming Urochloa ruziziensis (R.Germ. & Evrard) seeds with signaling molecules improves germination. Journal of Seed Science, 44(e202244044). https://doi.org/10.1590/2317-1545v44262484

Owusu Adjei, M., Zhou, X., Mao, M., Xue, Y., Liu, J., Hu, H., Luo, J., Zhang, H., Yang, W., Feng, L. and Ma, J. (2021). Magnesium oxide nanoparticle effect on the growth, development, and microRNAs expression of Ananas comosus var. bracteatus. Journal of Plant Interactions, 16(1), 247–257. https://doi.org/10.1080/17429145.2021.1931720

Pathak, A., Kaur, R. and Thakur, N. (2021). Germination studies and biochemical profile in seeds of wheat exposed to magnesium nanoparticles. International Journal of Pharmaceutical Sciences and Research, 12(12), 6638–6641.

Pereira, A. D. E. S., Oliveira, H. C., Fraceto, L. F. and Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 1–29. https://doi.org/10.3390/NANO11020267

Salcido-Martinez, A., Sanchez, E., Licon-Trillo, L., PerezAlvarez, S., Palacio-Marquez, A., Amaya-olivas, N. I. and Preciado-Rangel, P. (2020). Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2167–2181. https://doi.org/10.15835/nbha48412090

Sharma, S., Singh, S., Bahuguna, A., Yadav, B., Barthwal, A., Khatana, R. N. S., Pandey, A., Thakur, R., Jatav, H. S. (2022). Nanotechnology: an efficient tool in plant nutrition management. En Ecosystem Services: Types, Management and Benefits (pp. 165–188).

Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons. Soniya, V. P., Bhindhu, P. S. and Sureshkumar, P. (2021). Critical level of magnesium for cowpea [Vigna unguiculata (L.) Walp.] in ultisols of Kerala. Legume Research, 44(9), 1060–1065. https://doi.org/10.18805/LR-4267

Srinivasan, R., Maity, A., Singh, K. K., Ghosh, P. K., Kumar, S., Srivastava, M. K., Radhakrishna, A., Srivastava, R. and Kumari, B. (2017). Influence of copper oxide and zinc oxide nano-particles on growth of fodder cowpea and soil microbiological properties. Range Management and Agroforestry, 38(2), 208–214.

Tankari, M., Wang, C., Ma, H., Li, X., Li, L., Soothar, R. K., Cui, N., Zaman-Allah, M., Hao, W., Liu, F. and Wang, Y. (2021). Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agric. Water Manag., 245, 106565. https://doi.org/10.1016/j.agwat.2020.106565

Thakur, M., Tiwari, S., Kataria, S. and A and, A. (2022). Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Scientia Horticulturae, 305, 111355. https://doi.org/10.1016/j.scienta.2022.111355

Vijai, K., Anugraga, A. R., Kannan, M., Singaravelu, G. and Govindaraju, K. (2020). Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigor of green gram (Vigna radiata L.). Materials Letters, 271, 127792. https://doi.org/10.1016/j.matlet.2020.127792

Voko, M. P., Kulkarni, M. G., Ngoroyemoto, N., Gupta, S., Finnie, J. F. and Van Staden, J. (2022). Vermicompost leachate, seaweed extract and smoke-water alleviate drought stress in cowpea by influencing phytochemicals, compatible solutes and photosynthetic pigments. Plant Growth Regulation, 97(2), 327–342. https://doi.org/10.1007/s10725-022-00815-y

Wang, R., Gui, Y., Zhao, T., Ishii, M., Eguchi, M., Xu, H., Li, T. and Iwasaki, Y. (2020). Determining the relationship between floral initiation and source–sink dynamics of tomato seedlings affected by changes in shading and nutrients. HortScience, 55(4), 457–464. https://doi.org/10.21273/HORTSCI14753-19

Zirek, N. S. and Uzal, O. (2020). The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 967–977. https://doi.org/10.15835/nbha48211943

Cómo citar

APA

Durán Fernández, S., Bermúdez Zambrano, O. D., Rodríguez Páez, J. E., Pérez, E. H. & Niño Camacho, L. R. (2025). EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE). Acta Biológica Colombiana, 30(1), 95–104. https://doi.org/10.15446/abc.v30n1.113233

ACM

[1]
Durán Fernández, S., Bermúdez Zambrano, O.D., Rodríguez Páez, J.E., Pérez, E.H. y Niño Camacho, L.R. 2025. EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE). Acta Biológica Colombiana. 30, 1 (feb. 2025), 95–104. DOI:https://doi.org/10.15446/abc.v30n1.113233.

ACS

(1)
Durán Fernández, S.; Bermúdez Zambrano, O. D.; Rodríguez Páez, J. E.; Pérez, E. H.; Niño Camacho, L. R. EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE). Acta biol. Colomb. 2025, 30, 95-104.

ABNT

DURÁN FERNÁNDEZ, S.; BERMÚDEZ ZAMBRANO, O. D.; RODRÍGUEZ PÁEZ, J. E.; PÉREZ, E. H.; NIÑO CAMACHO, L. R. EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE). Acta Biológica Colombiana, [S. l.], v. 30, n. 1, p. 95–104, 2025. DOI: 10.15446/abc.v30n1.113233. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/113233. Acesso em: 26 dic. 2025.

Chicago

Durán Fernández, Santiago, Oscar Darío Bermúdez Zambrano, Jorge Enrique Rodríguez Páez, Edier Humberto Pérez, y Leidy Rocío Niño Camacho. 2025. «EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE)». Acta Biológica Colombiana 30 (1):95-104. https://doi.org/10.15446/abc.v30n1.113233.

Harvard

Durán Fernández, S., Bermúdez Zambrano, O. D., Rodríguez Páez, J. E., Pérez, E. H. y Niño Camacho, L. R. (2025) «EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE)», Acta Biológica Colombiana, 30(1), pp. 95–104. doi: 10.15446/abc.v30n1.113233.

IEEE

[1]
S. Durán Fernández, O. D. Bermúdez Zambrano, J. E. Rodríguez Páez, E. H. Pérez, y L. R. Niño Camacho, «EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE)», Acta biol. Colomb., vol. 30, n.º 1, pp. 95–104, feb. 2025.

MLA

Durán Fernández, S., O. D. Bermúdez Zambrano, J. E. Rodríguez Páez, E. H. Pérez, y L. R. Niño Camacho. «EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE)». Acta Biológica Colombiana, vol. 30, n.º 1, febrero de 2025, pp. 95-104, doi:10.15446/abc.v30n1.113233.

Turabian

Durán Fernández, Santiago, Oscar Darío Bermúdez Zambrano, Jorge Enrique Rodríguez Páez, Edier Humberto Pérez, y Leidy Rocío Niño Camacho. «EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE)». Acta Biológica Colombiana 30, no. 1 (febrero 12, 2025): 95–104. Accedido diciembre 26, 2025. https://revistas.unal.edu.co/index.php/actabiol/article/view/113233.

Vancouver

1.
Durán Fernández S, Bermúdez Zambrano OD, Rodríguez Páez JE, Pérez EH, Niño Camacho LR. EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE). Acta biol. Colomb. [Internet]. 12 de febrero de 2025 [citado 26 de diciembre de 2025];30(1):95-104. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/113233

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

487

Descargas

Los datos de descargas todavía no están disponibles.