Publicado
EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE)
Effect of Nanopriming with Magnesium Oxide on the development of Vigna unguiculata (Fabaceae)
DOI:
https://doi.org/10.15446/abc.v30n1.113233Palabras clave:
Vigna unguiculata, nanoprimming, desarrollo, óxido de magnesio (es)Vigna unguiculata, nanopriming, development, magnesium oxide (en)
Descargas
En este trabajo se evaluó el efecto de nanopartículas de óxido de magnesio (MgO-NPs) sobre el desarrollo de Vigna unguiculata. Para ello se sintetizaron, por una ruta química, MgO-NPs que se caracterizaron utilizando: espectroscopía IR, difracción de rayos X (DRX), microscopía electrónica de barrido (MEB) y espectroscopía EDAX. Los resultados indicaron que la única fase cristalina presente en el sólido sintetizado fue MgO tipo periclasa, con alta pureza química y tamaño nanométrico (< 100 nm). Al evaluar el efecto de MgONPs sobre V. unguiculata, se observó que redujeron el número de días a floración (hasta 70.5 ± 6.0 días) e incrementaron el número acumulado de vainas por planta (hasta 7.0 ±0.8 vainas). Además, las nanopartículas de este óxido provocaron disminución en la masa seca de tallos. De acuerdo con los resultados, las MgO-NPs suministradas a V. unguiculata mediante nanopriming, pueden llegar a ser una forma eficiente de proporcionar un elemento esencial como el Mg, desempeñando así su función como nanofertilizante.
This work evaluated the effect of magnesium oxide nanoparticles (MgO-NPs) on the development of Vigna unguiculata. MgO-NPs were synthesized using a chemical route and characterized with IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and EDAX spectroscopy. The results indicated that the only crystalline phase present in the synthesized solid was periclase-type MgO, with high chemical purity and nanoscale size (< 100 nm). When evaluating the effect of MgO-NPs on V. unguiculata, it was observed that they reduced the number of days to flowering (up to 70.5 ± 6.0 days) and increased the accumulated number of pods per plant (up to 7.0 ± 0.8 pods). Additionally, these oxide nanoparticles caused a decrease in stem dry mass. According to the results, MgO-NPs supplied to V. unguiculata through nanopriming can become an efficient way to provide an essential element like Mg, thus serving their function as nanofertilizer.
Referencias
Abbass, J. A., Al-Zurfi, T. H., Hnoosh, L. J. H., Ali, A. A. and Abbas, A. A. (2020). Roles of spraying amino acids and chelated magnesium on growth, flowering and production of corms of Fressia hybrida. Scientific Papers Series B. Horticulture, 64(2), 281–285.
Agredo–Trochez, Y. A., Molano-Cabezas, A. C., Arciniegas- Grijalba, P. A. and Rodriguez-Paez, J. E. (2022). Nanoparticles of magnesium oxyhydroxide and copper oxide: Synthesis and evaluation of their in vitro fungicidal activity on the fungus Omphalia sp. Inorganic Chemistry Communications, 146. https://doi.org/10.1016/j.inoche.2022.110085
Aljanabi, H. A. Y. (2021). Effects of nano fertilizers technology on agriculture production. Annals of the Romanian Society for Cell Biology, 25(4), 6728–6739.
Al-Salhy, S. J. K. and Rasheed, A. A. (2020). Effect of mung bean seed priming methods and duration on seed germination on seed germination and seedling vigor. Plant Archives, 20(1), 27–31.
Aluko, O. O., Li, C., Wang, Q. and Liu, H. (2021). Sucrose utilization for improved crop yields: a review article. International Journal of Molecular Sciences, 22(9), 4704. https://doi.org/10.3390/ijms22094704
Amir, M., Prasad, D., Khan, F. A., Khan, A. and Ahmad, B. (2024). Seed priming: An overview of techniques, mechanisms, and applications. Plant Science Today, 11(1), 553-563.
Ammar, S. and Fievet, F. (2020). Polyol Synthesis: A versatile wet-chemistry route for the design and production of functional inorganic nanoparticles. Nanomaterials, 10(6), 1217. https://doi.org/10.3390/nano10061217
Arun, M. N., Hebbar, S. S., Bhanuprakash, K., Senthivel, T., Nair, A. K. and Pandey, D. P. (2020). Influence of seed priming and different irrigation levels on growth parameters of cowpea [Vigna unguiculata (L.) walp]. Legume Research, 43(1), 99–104. https://doi.org/10.18805/LR-3945
Belay, F., Gebreslasie, A. and Meresa, H. (2017). Agronomic performance evaluation of cowpea [Vigna unguiculata (L.) Walp] varieties in Abergelle District, Northern Ethiopia. Journal of Plant Breeding and Crop Science, 9(8), 139–143.
Boukar, O., Togola, A., Chamarthi, S., Belko, N., Ishikawa, H., Suzuki, K. and Fatokun, C. (2019). Cowpea [Vigna unguiculata (L.) Walp.] Breeding. In Al-Khayri, J., Jain, S. and Johnson, D. (eds) Advances in Plant Breeding Strategies: Legumes (pp. 201–243). Springer International. https://doi.org/10.1007/978-3-030-23400-3_6
Cakmak, I. (2013). Magnesium in crop production, food quality and human health. Plant and Soil, 368(1–2), 1–4. https://doi.org/10.1007/s11104-013-1781-2
Cowan, J. A. (2002). Structural and catalytic chemistry of magnesium-dependent enzymes. BioMetals, 15(3), 225–235. https://doi.org/10.1023/A:1016022730880
Cullity, B. D. and Stock, S. R. (2014). Elements of X-Ray diffraction. Tercera edicion. Pearson.
Dean, A. M., Voss, D. and Draguljić, D. (2017). Design and analysis of experiments (Segunda edicion). Cham-Suiza: Springer. https://doi.org/10.1007/978-3-319-52250-0
Estrada-Dominguez, V., Marquez-Quiroz, C., de la Cruz- Lazaro, E., Osorio-Osorio, R. and Sanchez-Chavez, E. (2018). Biofortificacion de frijol caupi (Vigna unguiculata L. Walp) con zinc: efecto en el rendimiento y contenido mineral. Revista Mexicana de Ciencias Agrícolas, 20, 4149–4160. https://doi.org/10.29312/remexca.v0i20.986
Farooq, M., Usman, M., Nadeem, F., Rehman, H. U., Wahid, A., Basra, S. M. A. and Siddique, K. H. M. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731–771. https://doi.org/10.1071/CP18604
Fujikawa, I., Takehara, Y., Ota, M., Imada, K., Sasaki, K., Kajihara, H., Sakai, S., Jogaiah, S. and Ito, S. ichi. (2021). Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. Journal of Biotechnology, 325, 100–108. https://doi.org/10.1016/j.jbiotec.2020.11.012
Ghorbanian, A. R., Khoshgoftarmanesh, A. H. and Zahedi, M. (2019). The effect of foliar-applied magnesium on root cell membrane H+-ATPase activity and physiological characteristics of sugar beet. Physiology and Molecular Biology of Plants, 25(5), 1273. https://doi.org/10.1007/S12298-019-00695-Z
Glotra, A., Singh, M. and Maneesha. (2023). Nanofertilizers: A review on the futuristic technology of nutrient management in agriculture. Agricultural Reviews, 44(2), 238–244. https://doi.org/10.18805/ag.R-2469
Granda-Ruiz, J. V., Cajas-Salazar, N. and Rodriguez-Paez, J. E. (2023). Magnesium oxyhydroxide nanoparticles: Synthesis, characterization and evaluation of their genotoxicity in Vicia faba L. Materials Science and Engineering: B, 298, 116896. https://doi.org/10.1016/j.mseb.2023.116896
Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z. and Chen, K. (2015). Magnesium stress signaling in plant: Just a beginning. Plant Signaling & Behavior, 10(3). https://doi.org/10.4161/15592324.2014.992287
Gutierrez-Pulido, H. y de la Vara-Salazar, R. (2012). Análisis y diseño de experimentos (3a ed.). Mc Graw Hill.
Hasanaklou, N. T., Mohagheghi, V., Hasanaklou, H. T., Ma’mani, L., Malekmohammadi, M., Moradi, F. and Dalvand, Y. (2023). Seed nano-priming using silica nanoparticles: effects in seed germination and physiological properties of Stevia rebaudiana Bertoni. Chemical and Biological Technologies in Agriculture, 10(1), 1–13. https://doi.org/10.1186/S40538-023-00445-0
Havlin, J. L., Tisdale, S. L., Nelson, W. R. and Beaton, J. D. (2017). Soil fertility and fertilizers: an introduction to nutrient management (octava edicion). Uttar Pradesh-India: Pearson.
Hawkes, P. W. and Spence, J. C. H. (2019). Springer handbook of microscopy (1a ed.; P. W. Hawkes and J. C. H. Spence, Eds.). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-00069-1
Hawkesford, M. J., Cakmak, I., Coskun, D., De Kok, L. J., Lambers, H., Schjoerring, J. K. and White, P. J. (2023). Functions of macronutrients. Marschner’s Mineral Nutrition of Plants, 201–281. https://doi.org/10.1016/B978-0-12-819773-8.00019-8
He, H., Jin, X., Ma, H., Deng, Y., Huang, J. and Yin, L. (2020). Changes of plant biomass partitioning, tissue nutrients and carbohydrates status in magnesium-deficient banana seedlings and remedy potential by foliar application of magnesium. Scientia Horticulturae, 268, 109377. https://doi.org/10.1016/j.scienta.2020.109377
Huo, H., Wei, S. and Bradford, K. J. (2016). DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences, 113(15). https://doi.org/10.1073/pnas.1600558113
Hussain, S., Hussain, S., Khaliq, A., Ali, S. and Khan, I. (2019). Physiological, biochemical, and molecular aspects of seed priming. In Hasanuzzaman, M. and Fotopoulos, V. (eds) Priming and pretreatment of seeds and seedlings (pp. 43–62). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_3
Instituto Geografico Agustin Codazzi. (2006). Métodos analíticos del laboratorio de suelos. IGAC.
Jaghdani, S., Jahns, P. and Trankner, M. (2021). Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization. Plant Science, 302, 110751. https://doi.org/10.1016/j.plantsci.2020.110751
Janeclare, W. W., Omami N, E., Opile W, R., Ochuodho O, J. and Oluko S, P. (2021). Effect of calcium and magnesium on flowering and fruiting of tomato (Lycopersicon esculentum Mill). International Journal of Research and Innovation in Applied Science, 2454–6194.
Kebede, E. and Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805. https://doi.org/10.1080/23311932.2020.1769805
Kumar, S., Rahman, S., Rahman, F. H. and Pramanik, S. (2021). Nanofertlizers-a potential alternative to chemical fertilizers. Agriculture & Environment, 2(6), 31–37.
Leon-Burgos, A. F., Beltran Cortes, G. Y., Barragan Perez, A. L. and Balaguera-Lopez, H. E. (2021). Distribucion de fotoasimilados en los organos vertederos de plantas Solanaceas, caso tomate y papa. Una revision. Ciencia y Agricultura, 18(3), 79–97. https://doi.org/10.19053/01228420.v18.n3.2021.13566
Li, G., Zhou, C., Yang, Z., Zhang, C., Dai, Q., Huo, Z. and Xu, K. (2022). Low nitrogen enhances apoplastic phloem loading and improves the translocation of photoassimilates in rice leaves and stems. Plant And Cell Physiology, 63(7), 991–1007. https://doi.org/10.1093/pcp/pcac066
Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/J.PBI.2009.04.003
Monteoliva, M. I., Ruiz, O. A. and Li, F. (2023). Editorial: Legumes and their microbiome in climate change mitigation. Frontiers in Plant Science, 14, 1–3. DOI: https://doi.org/10.3389/fpls.2023.1220535
Moreira, W. R., da Silva Bispo, W. M., Rios, J. A., Debona, D., Nascimento, C. W. A. and Rodrigues, F. A. (2015). Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae. Scientia Agricola, 72(4), 328–333. https://doi.org/10.1590/0103-9016-2014-0312
Oliveira, T. F., Santos, H. O. dos, Ribeiro, J. B., Pereira, W. V. S., Pereira, A. A. S. and Cunha Neto, A. R. da. (2022). Priming Urochloa ruziziensis (R.Germ. & Evrard) seeds with signaling molecules improves germination. Journal of Seed Science, 44(e202244044). https://doi.org/10.1590/2317-1545v44262484
Owusu Adjei, M., Zhou, X., Mao, M., Xue, Y., Liu, J., Hu, H., Luo, J., Zhang, H., Yang, W., Feng, L. and Ma, J. (2021). Magnesium oxide nanoparticle effect on the growth, development, and microRNAs expression of Ananas comosus var. bracteatus. Journal of Plant Interactions, 16(1), 247–257. https://doi.org/10.1080/17429145.2021.1931720
Pathak, A., Kaur, R. and Thakur, N. (2021). Germination studies and biochemical profile in seeds of wheat exposed to magnesium nanoparticles. International Journal of Pharmaceutical Sciences and Research, 12(12), 6638–6641.
Pereira, A. D. E. S., Oliveira, H. C., Fraceto, L. F. and Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 1–29. https://doi.org/10.3390/NANO11020267
Salcido-Martinez, A., Sanchez, E., Licon-Trillo, L., PerezAlvarez, S., Palacio-Marquez, A., Amaya-olivas, N. I. and Preciado-Rangel, P. (2020). Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2167–2181. https://doi.org/10.15835/nbha48412090
Sharma, S., Singh, S., Bahuguna, A., Yadav, B., Barthwal, A., Khatana, R. N. S., Pandey, A., Thakur, R., Jatav, H. S. (2022). Nanotechnology: an efficient tool in plant nutrition management. En Ecosystem Services: Types, Management and Benefits (pp. 165–188).
Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons. Soniya, V. P., Bhindhu, P. S. and Sureshkumar, P. (2021). Critical level of magnesium for cowpea [Vigna unguiculata (L.) Walp.] in ultisols of Kerala. Legume Research, 44(9), 1060–1065. https://doi.org/10.18805/LR-4267
Srinivasan, R., Maity, A., Singh, K. K., Ghosh, P. K., Kumar, S., Srivastava, M. K., Radhakrishna, A., Srivastava, R. and Kumari, B. (2017). Influence of copper oxide and zinc oxide nano-particles on growth of fodder cowpea and soil microbiological properties. Range Management and Agroforestry, 38(2), 208–214.
Tankari, M., Wang, C., Ma, H., Li, X., Li, L., Soothar, R. K., Cui, N., Zaman-Allah, M., Hao, W., Liu, F. and Wang, Y. (2021). Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agric. Water Manag., 245, 106565. https://doi.org/10.1016/j.agwat.2020.106565
Thakur, M., Tiwari, S., Kataria, S. and A and, A. (2022). Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Scientia Horticulturae, 305, 111355. https://doi.org/10.1016/j.scienta.2022.111355
Vijai, K., Anugraga, A. R., Kannan, M., Singaravelu, G. and Govindaraju, K. (2020). Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigor of green gram (Vigna radiata L.). Materials Letters, 271, 127792. https://doi.org/10.1016/j.matlet.2020.127792
Voko, M. P., Kulkarni, M. G., Ngoroyemoto, N., Gupta, S., Finnie, J. F. and Van Staden, J. (2022). Vermicompost leachate, seaweed extract and smoke-water alleviate drought stress in cowpea by influencing phytochemicals, compatible solutes and photosynthetic pigments. Plant Growth Regulation, 97(2), 327–342. https://doi.org/10.1007/s10725-022-00815-y
Wang, R., Gui, Y., Zhao, T., Ishii, M., Eguchi, M., Xu, H., Li, T. and Iwasaki, Y. (2020). Determining the relationship between floral initiation and source–sink dynamics of tomato seedlings affected by changes in shading and nutrients. HortScience, 55(4), 457–464. https://doi.org/10.21273/HORTSCI14753-19
Zirek, N. S. and Uzal, O. (2020). The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 967–977. https://doi.org/10.15835/nbha48211943
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).








