EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE) BAJO CONDICIONES DE INVERNADERO
DOI:
https://doi.org/10.15446/abc.v30n1.113233Palabras clave:
Vigna unguiculata, nanoprimming, desarrollo, óxido de magnesio (es)Vigna unguiculata, nanopriming, development, magnesium oxide (en)
Descargas
En este trabajo se evalúa el efecto de las nanopartículas de óxido de magnesio (MgO-NPs) sobre el desarrollo reproductivo de Vigna unguiculata. Para ello se sintetizaron, por una ruta química, MgO-NPs que se caracterizaron utilizando técnicas convencionales: espectroscopía IR, difracción de rayos x (DRX), microscopía electrónica de barrido (MEB) y espectroscoía EDAX. Los resultados indicaron que la única fase cristalina presente en el sólido sintetizado era MgO tipo periclasa, con alta pureza química, y tamaño nanométrico
(< 100 nm). Al evaluar el efecto de estas MgO-NPs sobre el V. unguiculata, se encontró que estas propiciaron la precocidad en la floración y mayor número acumulado de vainas. No obstante, los tratamientos con MgO-NPs provocaron la disminución del peso seco del tallo.
This study evaluates the effect of magnesium oxide nanoparticles (MgO-NPs) on the reproductive development of Vigna unguiculata. MgO-NPs were synthesized using a chemical route and characterized using conventional techniques: IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and EDAX spectroscopy. The results indicated that the only crystalline phase present in the synthesized solid was periclase-type MgO with high chemical purity and nanometric size (<100 nm). When the effect of these MgO-NPs on V. unguiculata was evaluated, they promoted precocity in flowering and a higher cumulative number of pods. However, MgO-NP treatments caused a decrease in stem dry weight.
Referencias
Antova, G. A., Stoilova, T. D., & Ivanova, M. M. (2014). Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. Journal of Food Composition and Analysis, 33(2), 146–152. https://doi.org/10.1016/j.jfca.2013.12.005
Arun, M. N., Hebbar, S. S., Bhanuprakash, K., Senthivel, T., Nair, A. K., & Pandey, D. P. (2020). Influence of seed priming and different irrigation levels on growth parameters of cowpea [vigna unguiculata (L.) walp]. Legume Research, 43(1), 99–104. https://doi.org/10.18805/LR-3945
Belay, F., Gebreslasie, A., & Meresa, H. (2017). Agronomic performance evaluation of cowpea [Vigna unguiculata (L.) Walp] varieties in Abergelle District, Northern Ethiopia. Journal of Plant Breeding and Crop Science, 9(8), 139–143. https://doi.org/10.5897/JPBCS2017.0640
Boukar, O., Togola, A., Chamarthi, S., Belko, N., Ishikawa, H., Suzuki, K., & Fatokun, C. (2019). Cowpea [Vigna unguiculata (L.) Walp.] Breeding. In Advances in Plant Breeding Strategies: Legumes (pp. 201–243). Springer International Publishing. https://doi.org/10.1007/978-3-030-23400-3_6
Cakmak, I. (2013). Magnesium in crop production, food quality and human health. Plant and Soil, 368(1–2), 1–4. https://doi.org/10.1007/s11104-013-1781-2
Cowan, J. A. (2002). Structural and catalytic chemistry of magnesium-dependent enzymes. BioMetals, 15(3), 225–235. https://doi.org/10.1023/A:1016022730880
Farooq, M., Usman, M., Nadeem, F., Rehman, H. U., Wahid, A., Basra, S. M. A., & Siddique, K. H. M. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731–771. https://doi.org/10.1071/CP18604
Fujikawa, I., Takehara, Y., Ota, M., Imada, K., Sasaki, K., Kajihara, H., Sakai, S., Jogaiah, S., & Ito, S. ichi. (2021). Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. Journal of Biotechnology, 325(September), 100–108. https://doi.org/10.1016/j.jbiotec.2020.11.012
Ghorbanian, A. R., Khoshgoftarmanesh, A. H., & Zahedi, M. (2019). The effect of foliar-applied magnesium on root cell membrane H+-ATPase activity and physiological characteristics of sugar beet. Physiology and Molecular Biology of Plants, 25(5), 1273. https://doi.org/10.1007/S12298-019-00695-Z
Granda-Ruiz, J. V., Cajas-Salazar, N., & Rodriguez-Paez, J. E. (2023). Magnesium oxyhydroxide nanoparticles: Synthesis, characterization and evaluation of their genotoxicity in Vicia faba L. Materials Science and Engineering: B, 298, 116896. https://doi.org/10.1016/j.mseb.2023.116896
Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z., & Chen, K. (2015). Magnesium stress signaling in plant: Just a beginning. Plant Signaling & Behavior, 10(3). https://doi.org/10.4161/15592324.2014.992287
Havlin, J. L., Beaton, J. D., Tisdale, S. L., Nelson, W. R., & Nelson, W. L. (2017). Soil Fertility and Fertilizers: An Introduction to Nutrient Management Title Soil Fertility and Fertilizers. Pearson.
Hermans, C., Bourgis, F., Faucher, M., Strasser, R. J., Delrot, S., & Verbruggen, N. (2005). Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta, 220(4), 541–549. https://doi.org/10.1007/s00425-004-1376-5
Hussain, S., Hussain, S., Khaliq, A., Ali, S., & Khan, I. (2019). Physiological, Biochemical, and Molecular Aspects of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings (pp. 43–62). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_3
Instituto Geográfico Agustín Codazzi. (2006). Métodos analíticos del laboratorio de suelos. IGAC.
Iqbal, M., Ashraf, M., Jamil, A., & Ur‐Rehman, S. (2006). Does Seed Priming Induce Changes in the Levels of Some Endogenous Plant Hormones in Hexaploid Wheat Plants Under Salt Stress? Journal of Integrative Plant Biology, 48(2), 181–189. https://doi.org/10.1111/j.1744-7909.2006.00181.x
Jaghdani, S., Jahns, P., & Tränkner, M. (2021). Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization. Plant Science, 302, 110751. https://doi.org/10.1016/j.plantsci.2020.110751
Karimi, N., Goltapeh, E. M., Amini, J., Mehnaz, S., & Zarea, M. J. (2021). Effect of Azospirillum zeae and Seed Priming with Zinc, Manganese and Auxin on Growth and Yield Parameters of Wheat, under Dryland Farming. Agricultural Research, 10(1), 44–55. https://doi.org/10.1007/s40003-020-00480-5
Kebede, E., & Bekeko, Z. (2020). Expounding the production and importance of cowpea ( Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805. https://doi.org/10.1080/23311932.2020.1769805
Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/J.PBI.2009.04.003
Maroufpoor, N., Mousavi, M., Hatami, M., Rasoulnia, A., & Lajayer, B. A. (2019). Mechanisms Involved in Stimulatory and Toxicity Effects of Nanomaterials on Seed Germination and Early Seedling Growth. In Advances in Phytonanotechnology: From Synthesis to Application (pp. 153–181). Academic Press. https://doi.org/10.1016/B978-0-12-815322-2.00006-7
Moreira, W. R., da Silva Bispo, W. M., Rios, J. A., Debona, D., Nascimento, C. W. A., & Rodrigues, F. Á. (2015). Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with bipolaris oryzae. Scientia Agricola, 72(4), 328–333. https://doi.org/10.1590/0103-9016-2014-0312
Pathak, A., Kaur, R., & Thakur, N. (2021). Germination studies and biochemical profile in seeds of wheat exposed to magnesium nanoparticles. International Journal of Pharmaceutical Sciences and Research, 12(12), 6638–6641.
Salcido-Martínez, A., Sánchez, E., Licón-Trillo, L., Pérez-Álvarez, S., Palacio-Márquez, A., Amaya-olivas, N. I., & Preciado-Rangel, P. (2020). Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2167–2181. https://doi.org/10.15835/nbha48412090
Sharma, P., Kumar, V., & Guleria, P. (2022). In vitro exposure of magnesium oxide nanoparticles negatively regulate the growth of Vigna radiata. International Journal of Environmental Science and Technology, 19(11), 10679–10690. https://doi.org/10.1007/s13762-021-03738-9
Siddiqui, M. H., Alamri, S. A., Al-Khaishany, M. Y. Y., Al-Qutami, M. A., Ali, H. M., Al-Whaibi, M. H., Al-Wahibi, M. S., & Alharby, H. F. (2016). Mitigation of adverse effects of heat stress on Vicia faba by exogenous application of magnesium. Saudi Journal of Biological Sciences, 25(7), 1393–1401. https://doi.org/10.1016/j.sjbs.2016.09.022
Srinivasan, R., Maity, A., Singh, K. K., Ghosh, P. K., Kumar, S., Srivastava, M. K., Radhakrishna, A., Srivastava, R., & Kumari, B. (2017). Influence of copper oxide and zinc oxide nano-particles on growth of fodder cowpea and soil microbiological properties. Range Management and Agroforestry, 38(2), 208–214.
Tauseef, A., Hisamuddin, Khalilullah, A., & Uddin, I. (2021). Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology. Experimental Parasitology, 220, 108045. https://doi.org/10.1016/J.EXPPARA.2020.108045
Vijai, K., Anugraga, A. R., Kannan, M., Singaravelu, G., & Govindaraju, K. (2020). Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Materials Letters, 271, 127792. https://doi.org/10.1016/j.matlet.2020.127792
Wojtyla, Ł., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions. Journal of Plant Physiology, 203, 116–126. https://doi.org/10.1016/J.JPLPH.2016.04.008
Zirek, N. S., & Uzal, O. (2020). The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 967–977. https://doi.org/10.15835/nbha48211943
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).