Resolución de conflictos al interior del organismo: el papel del sistema inmune
Conflict resolution within the organism: the role of the Immune System
DOI:
https://doi.org/10.15446/abc.v21n1Supl.50973Palabras clave:
Sistema Inmune, Inmunidad en cnidarios, Inmunología evolutiva, Histocompatibilidad (es)Cnidarian immunity, histocompatibility, evolutionary immunology, immune system (en)
Descargas
El sistema inmune de los animales está constituido por una gran variedad de células y moléculas que colectivamente reconocen, neutralizan y eliminan potenciales agentes nocivos, tanto bióticos como abióticos. El estudio del sistema inmune ha estado tradicionalmente sesgado hacía algunas especies de importancia médica o económica, a expensas de la gran mayoría de especies que constituyen la diversidad animal. Con la actual facilidad de secuenciar genomas y transcriptomas, se ha abierto la posibilidad de estudiar los sistemas inmunes de muy variados grupos animales. Uno de estos grupos es el de los cnidarios, que incluye a los corales, anémonas y medusas, en los que el estudio del sistema inmune ha probado ser de gran utilidad para entender dos tipos de conflictos de relevancia en la supervivencia de estos organismos. El primero es la respuesta de los corales a enfermedades de carácter infeccioso y el segundo hace referencia a las reacciones de histocompatibilidad que median la competencia intraespecífica por el espacio habitable. Este artículo de reflexión trata en detalle el papel del sistema inmune de los cnidarios en la resolución de estos conflictos.
The immune system of animals is constituted by a large diversity of cells and molecules that collectively recognize, neutralize, and eliminate potential damaging agents, both biotic and abiotic. The study of the immune system has been traditionally biased towards some species with medical or economic importance, at the expense of the vast majority of species that constitute the animal diversity. With the current possibility of easily sequencing genomes and transcriptomes, there is an opportunity to study the immune systems of a wide variety of animal groups. One of these groups is the cnidarians, which include corals, anemones and jellyfishes, in which the study of the immune system has proved useful to understand two types of conflicts that are relevant for the survival of these organisms. The first one is the response of corals to diseases of infectious nature and the second relates to histocompatibility reactions, which mediate intraspecific competitions for habitable space. This article details the role of the cnidarian immune system to mediate the resolution of these two conflicts.
Referencias
Augustin R, Fraune S, Bosch TC. How Hydra senses and destroys microbes. Semin Immunol. 2010;22(1):54-8. Doi:10.1016/j.smim.2009.11.002
Augustin R, Fraune S, Franzenburg S, Bosch TC. Where simplicity meets complexity: hydra, a model for host-microbe interactions. Adv Exp Med Biol. 2012;710:71-81. Doi:10.1007/978-1-4419-5638-5_8
Augustin R, Siebert S, Bosch TC. Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra's innate immune system. Dev Comp Immunol. 2009;33(7):830-837. Doi:10.1016/j.dci.2009.01.009
Bancroft FW. Variation and fusion in colonies of compound ascidians. Proc Calif Acad Sci. 1903;3:137-186.
Beisel HG, Kawabata S, Iwanaga S, Huber R, Bode W. Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J. 1999;18(9):2313-22. Doi:10.1093/emboj/18.9.2313
Bosch TC, Anton-Erxleben F, Hemmrich G, Khalturin K. The Hydra polyp: nothing but an active stem cell community. Dev Growth Differ. 2010;52(1):15-25. Doi:10.1111/j.1440-169X.2009.01143.x.
Bosch TC, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, et al. Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol. 2009;33(4):559-569. Doi:10.1016/j.dci.2008.10.004
Buss LW. Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA. 1982;79:5337-5341.
Buss LW. The Evolution of Individuality. Princeton: Princeton University Press; 1987. p. 97-102.
Buss LW. Competition within and between encrusting invertebrates. Trends Ecol Evol. 1990;5:352-356. Doi: 10.1016/0169-5347(90)90093-S.
Buss LW, Grosberg RK. Morphogenetic basis for phenotypic differences in hydroid competitive behaviour. Nature. 1990;343:63-66. Doi: 10.1038/343063a0
Buss LW, Mcfadden CS, Keene DR. Biology of hydractiniid hydroids. 2. Histocompatibility effector system/competitive mechanism mediated by nematocyst discharge. Biol Bull. 1984;167:139-158.
Buss LW, Shenk MA. Hydroid allorecognition regulates competition at both the level of the colony and at the level of the cell lineage. In: Marchalonis JJ, Reinisch C, editors. Defense Molecules. New York: Alan R. Liss; 1990. p. 85-105.
Cadavid LF. Genetic characterization of the hydroid allorecognition complex (Tesis Doctorado). New Haven: Yale University; 2001. p. 24-65.
Cadavid LF. Evolución de sistemas complejos: el caso del sistema immune. Acta biol Colomb. 2009;14:102-106.
Cadavid LF, Powell AE, Nicotra ML, Moreno M, Buss LW. An invertebrate histocompatibility complex. Genetics. 2004;167:357-365. Doi:10.1534/genetics.167.1.357
Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. The dynamic genome of Hydra. Nature. 2010;464(7288):592-596. Doi 10.1038/nature08830
Constanza R, Darge R, Degroot R, Farber S, Grasso M, Hannon B. The value of the world’s ecosystem services and natural capital. Nature. 1997;387(issue):253-260.
Domart C. Comprehensive characterization of skeletal tissue growth anomalies of the finger coral Porites compressa. Coral Reefs. 2006;25:531-543. Doi:
Dunn SR. Immunorecognition and Immunoreceptors in Cnidarians. Invert Surv J. 2009;6(1):7-14.
Frank U, Leitz T, Muller WA. The hydroid Hydractinia: a versatile, informative cnidarian representative. BioEssays. 2001;23:963-971.
Fraune S, Abe Y, Bosch TC. Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota. Environ Microbiol. 2009;11(9):2361-2369. Doi: 10.1111/j.1462-2920.2009.01963.x.
Gardner T, Côté J, Gill A, Grant A, Watkinson A. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958-960. Doi: 10.1126/science.1086050
Grosberg RK. The evolution of allorecognition specificity in clonal invertebrates. Q Rev Biol. 1988;63:377-412.
Grosberg RK, Levitan DR, Cameron BB. Evolutionary genetics of the allorecognition in the colonial hydroid Hydractinia symbiolongicarpus. Evolution. 1996;50:2221-2240.
Hauenschild CV. Genetische und entwicklungphysiologische Untersuchungen über Intersexuälitat und Gewebeverträlichkeit bei Hydractinia echinata Flem. Wilhem Roux' Archiv. 1954;147:1-41.
Hauenschild CV. Uber die vererbung einer geweberverträglichkeits eigenschaft bei dem hydroidpolypen Hydractini echinata. Z. Naturforsch. 1956;11b:132-138.
Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes and Development. 2004;18(18):2195-224.
Hayes ML, Eytan RI, Hellberg ME. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2). BMC Evol Biol. 2010;10:150. Doi: 10.1186/1471-2148-10-150
Hoffmann JA. The immune response of Drosophila. Nature. 2003;426(6962):33-8. Doi: 10.1038/nature02021
Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RaB. Phylogeneic perspectives in innate immunity. Science. 1999;284:1313-1318.
Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T, et al. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res. 2008;18:1112-1126. Doi: 10.1101/gr.069674.107
Imler JL, Hoffmann JA. Toll signaling: the TIReless quest for specificity. Nat Immunol. 2003;4(2):105-6. Doi: 10.1038/ni0203-105
Ivker FB. A hierarchy of histo-incompatibility in Hydractinia echinata. Biol Bull. 1972;143:162-174.
Jackson JBC. Ecological extintion and evolution in the brave new ocean. Proc Natl Acad Sci USA. 2008;105:11458-11465.
Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M, Gelhaus C, et al. Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem. 2009;284(3):1896-905. Doi: 10.1074/jbc.M804713200
Kitano H, Oda K. Robustness trade-offs and host-microbial symbiosis in the immune system. Mol Syst Biol. 2006;2:2006-0022. Doi: 10.1038/msb4100039
Kvennefors EC, Leggat W, Hoegh-Guldberg O, Degnan BM, Barnes AC. An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol. 2008;32(12):1582-92. Doi: 10.1016/j.dci.2008.05.010
Lange R, Plickert G, Müller WA. Histocompatibility in a low invertebrate, Hydractinia echinata: Analysis of the mechanism of rejection. J Exp Zool. 1989;249:284-292.
López JA, Fain MG, Cadavid LF. The evolution of the immune-type family Rhamnospondin in Cnidarians. Gene. 2011;473(issue):119-124. Doi: 10.1016/j.gene.2010.11.013
Mali B, Soza-Ried J, Frohme M, Frank U. Structural but not functional conservation of an immune molecule: a tachylectin-like gene in Hydractinia. Dev Comp Immunol. 2006;30(3):275-81. Doi: 10.1016/j.dci.2005.04.004
Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, et al. The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss. Genome Biol. 2007;8(4):R59. Doi: 10.1186/gb-2007-8-4-r59
Müller W. Experimentelle Untersuchungen über Stockentwicklung, Polypendifferenzierung und Sexualchimären bei Hydractinia echinata. Wilhem Roux' Arch. Entwickl.-Mech Org. 1964;155:182-268.
Mydlarz LD, Harvell C. Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp Biochem Physiol A Mol Integr Physiol. 2006;146:54-62.
Mydlarz LD, Holthouse SF, Peters EC, Harvell CD. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One. 2008;3(3):e1811.
Mydlarz LD, Jones LE, Harvell C. Innate Immunity, Environmental Drivers and Disease Ecology of Marine and Freshwater Invertebrates. Ann Rev Ecol Evol Syst. 2006;37:251-288.
Mydlarz LD, Palmer CV. The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol A Mol Integr Physiol. 2011;159(4):372-378.
Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, et al. A hypervariable invertebrate allodeterminant. Curr Biol. 2009;19(7):583-9. Doi: 10.1016/j.cub.2009.02.040
Powell AE, Nicotra ML, Moreno MA, Lakkis FG, Dellaporta SL, Buss LW. Differential effect of allorecognition loci on phenotype in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Genetics. 2007;177(4):2101-7. Doi: 10.1534/genetics.107.075689
Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317(5834):86-94. Doi: 10.1126/science.1139158
Rosa SF, Powell AE, Rosengarten RD, Nicotra ML, Moreno MA, Grimwood J, et al. Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol. 2010;20(12):1122-7. Doi: 10.1016/j.cub.2010.04.050
Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5(5):355-62. Doi: 10.1038/nrmicro1635
Schwarz JA, Brokstein PB, Voolstra C, Terry AY, Manohar CF, Miller DJ, et al. Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics. 2008;9:97. Doi: 10.1186/1471-2164-9-97
Schwarz RS, Bosch TC, Cadavid LF. Evolution of polydom-like molecules: identification and characterization of cnidarian polydom (Cnpolydom) in the basal metazoan Hydractinia. Dev Comp Immunol. 2008;32(10):1192-210. Doi: 10.1016/j.dci.2008.03.007
Schwarz RS, Hodes-Villamar L, Fitzpatrick KA, Fain MG, Hughes AL, Cadavid LF. A gene family of putative immune recognition molecules in the hydroid Hydractinia. Immunogenetics. 2007;59(3):233-46. Doi: 10.1007/s00251-006-0179-1
Shenk MA, Buss LW. Ontogenetic changes in fusibility in the colonial hydroid Hydractinia symbiolongicarpus. J Exp Zool. 1991;257:80-86.
Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476(7360):320-3. Doi: 10.1038/nature10249
Stoner DS, Rinkevich B, Weissman I. Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci USA. 1999;96:9149-9153.
Stoner DS, Weissman IL. Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA. 1996;93:15254-15259.
Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ. The genomic context of natural killer receptor extended gene families. Immunol Rev. 2001;181:20-38.
Vargas-Angel B, Peters EC, Kramarsky-Winter E, Gilliam DS, Dodge RE. Cellular reactions to sedimentation and temperature stress in the Caribbean coral Montastraea cavernosa. J Invertebr Pathol. 2007;95(2):140-145.
Weil E, Smith G, Gil-Agudelo DL. Status and progress in coral reef disease research. Dis Aquat Organ. 2006;69(1):1-7. Doi: 10.3354/dao069001
Wood-Charlson EM, Weis VM. The diversity of C-type lectins in the genome of a basal metazoan, Nematostella vectensis. Dev Comp Immunol. 2009;33(8):881-9. Doi: 10.1016/j.dci.2009.01.008
Yund PO, Cunningham CW, Buss LW. Recruitment and postrecruitment interactions in a colonial hydroid. Ecology. 1987;68:971-982
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2016 Acta Biológica Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).