Publicado

2020-08-25

TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS

EPITHELIAL-TO-MESENCHYMAL TRANSITION INDUCED BY VIRUS

TRANSIÇÃO EPITÉLIO-MESÉNQUIMA INDUZIDA PELO VÍRUS

DOI:

https://doi.org/10.15446/abc.v26n1.79358

Palabras clave:

EMT, microRNAs, Patogénesis viral, Plasticidad celular, Relación Virus-Hospedero (es)
Cellular plasticity, EMT, microRNAs, Viral pathogenesis, Virus-Host relationship (en)

Descargas

Autores/as

La Transición Epitelio-Mesénquima (EMT) es un proceso de dediferenciación altamente conservado en vertebrados. Este ocurre en células epiteliales con la activación progresiva de la pérdida de la polaridad, la adquisición de motilidad individual y la capacidad invasiva a otros tejidos. La EMT es un proceso normal durante el desarrollo; no obstante, en condiciones patológicas está relacionada con la inducción de metástasis, lo cual representa una vía alterna al desarrollo de procesos oncogénicos tempranos. Aunque la EMT es activada principalmente por factores de crecimiento, también se puede desencadenar por infecciones de patógenos intracelulares mediante la activación de rutas moleculares inductoras de este proceso. Por lo tanto, una infección bacteriana o viral pueda generar predisposición al desarrollo de tumores. Nuestro interés está enfocado principalmente encaracterizar la relación virus-hospedero, y en el caso de los virus, varios ya se han descrito como inductores de la EMT. En este artículo de revisión se describenelfenómeno de la plasticidad celular y la ocurrencia detallada del proceso de EMT, los patógenos virales reportados como inductores, los mecanismos moleculares usados para ello y las vías de regulación mediante miRNAs. Por último, se discute cómo esta relación virus-hospedero puede explicar la patogénesis de la enfermedad causada por Dengue virus, favoreciendo la identificación de blancos moleculares para terapia, estrategia conocida como Antivirales dirigidos a blancos celulares o HTA (Host-targeting antivirals).

Epithelial-to-Mesenchymal Transition (EMT) is a highly conserved dedifferentiation process in vertebrates. This process occurs in epithelial cells activating progressive loss of cell polarity, acquisition of individual motility and invasive capacity to other tissues. EMT is a normal process during development process, however, in pathological conditions is related to the induction of metastasis, which represents an alternative path to the development of early oncogenic processes. Although, EMT is mainly activated by growth factors, it can also be triggered by intracellular-pathogen-infections by activating molecular pathways that induce this process. Therefore, a bacterial or viral infection may generate predisposition to the development of tumors. Our interest is mainly focused on characterizing the host-virus relationship, and in the case of viruses, several have already been described as EMT inductors.In this review, phenomenon of cellular plasticity, detailed occurrence of the EMT, viral pathogens reported as inducers, the molecular mechanisms, and the regulatory pathways through miRNAs are described. Finally, we discuss how this host-virus relationship may explain the pathogenesis of the disease caused by Dengue virus, favoring the identification of molecular targets for therapy, a strategy known as Host-Targeting Antivirals (HTA).

A transição epitélio-mesenquimal (EMT) é um processo de desdiferenciação altamente conservado em vertebrados. Isso ocorre em células epiteliais que, após certos estímulos, ativam a perda de polaridade, a aquisição da motilidade individual e a capacidade invasiva de outros tecidos. A EMT é um processo normal durante o desenvolvimento, no entanto, em condições patológicas está relacionada à indução de metástase, representando um caminho alternativo para o desenvolvimento de processos oncogênicos precoces. Embora a EMT seja principalmente ativada por fatores de crescimento, ela também pode ser desencadeada por infecções por patógenos intracelulares, ativando vias moleculares que induzem esse processo. Portanto, uma infecção bacteriana ou viral pode gerar predisposição ao desenvolvimento de tumores. Nosso interesse é principalmente focado em caracterizar a relação vírus-hospedeiro e, no caso de vírus, vários já foram descritos como indutores de EMT. Neste artigo de revisão, são descritos o fenômeno da plasticidade celular e a ocorrência detalhada do processo de EMT. Também descrito em detalhe a ocorrência deste processo, os agentes patogénicos virais relatados como indutores, os mecanismos moleculares utilizados para os mesmos, e por vias reguladoras miARNs. Finalmente, discute-se como esta relação vírus-hospedeiro podem explicar a patogénese da doença causada pelo vírus do dengue, favorecendo a identificação dos alvos moleculares para a terapêutica, conhecida como antivirais segmentação alvos celulares ou estratégia HBP (antivirais-direccionamento hospedeiras).

Referencias

Ahodantin J, Lekbaby B, Bou Nader M, Soussan P, Kremsdorf D. Hepatitis B virus X protein enhances the development of liver fibrosis and the expression of genes associated with epithelial-mesenchymal transitions and tumor progenitor cells. Carcinogenesis. 2019; 41(3):358–367. Doi:https://doi.org/10.1093/carcin/bgz109 DOI: https://doi.org/10.1093/carcin/bgz109

Álvarez-Díaz DA, Gutiérrez-Díaz AA, Orozco-García E, Puerta-Gonzáles A, Bermúdez-Santana CI, Gallego-Gómez JC. Dengue virus potentially promotes migratory responses on endothelial cells by enhancing pro-migratory soluble factors and miRNAs. Virus Res. 2019;259:68–76. Doi:https://doi.org/10.1016/j.virusres.2018.10.018 DOI: https://doi.org/10.1016/j.virusres.2018.10.018

ATCC. American Type Culture Collection: The Global Bioresource Center. ATCC. 1925. Disponible en: www.atcc.org/Products/All/CRL-3243.aspx. Citado:10 Abr 2018

Barriere G, Fici P, Gallerani G, Fabbri F, Rigaud M. Epithelial Mesenchymal Transition: A double-edged sword. Clin Transl Med. 2015;4(14):1–6. Doi:https://doi.org/10.1186/s40169-015-0055-4 DOI: https://doi.org/10.1186/s40169-015-0055-4

Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, et al. Plasticity of the differentiated state. Science. 1985;230:758–766. Doi:https://doi.org/10.1126/science.2414846 DOI: https://doi.org/10.1126/science.2414846

Bloom W. Cellular differentiation and tissue culture. Physiol Rev. 1937;(149),589-617. Doi:https://doi.org/10.1152/physrev.1937.17.4.589 DOI: https://doi.org/10.1152/physrev.1937.17.4.589

Bose SK, Meyer K, Di Bisceglie AM, Ray RB, Ray R. Hepatitis C virus induces epithelial-mesenchymal transition in primary human hepatocytes. J Virol. 2012;86(24):13621–13628. Doi:https://doi.org/10.1128/JVI.02016-12 DOI: https://doi.org/10.1128/JVI.02016-12

Bullock MD, Sayan AE, Packham GK, Mirnezami AH. MicroRNAs: Critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell. 2012;104(1):3–12. Doi:https://doi.org/10.1111/boc.201100115 DOI: https://doi.org/10.1111/boc.201100115

Chargui A, Sanda M, Brest P, Hofman P, Vouret-Craviari V. Epithelial to mesenchymal transition in microbial pathogenesis. In: Hamilton G, editor. Cytokeratins Tools in Oncology. Niza, Francia: IntechOpen; 2011. p. 35-54. Doi:https://doi.org/10.5772/34135 DOI: https://doi.org/10.5772/34135

Chen X, Bode AM, Dong Z, Cao Y. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer. FASEB Journal, 2016;30(9):3001-3010. Doi:https://doi.org/10.1096/fj.201600388R DOI: https://doi.org/10.1096/fj.201600388R

Chen YS, Mathias RA, Mathivanan S, Kapp EA, Moritz RL, Zhu HJ, et al. Proteomics profiling of madin-darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGFβ-mediated epithelial-mesenchymal transition. Mol Cell Proteomics. 2011;10:1-15. Doi:https://doi.org/10.1074/mcp.M110.001131 DOI: https://doi.org/10.1074/mcp.M110.001131

Clarke TB, Francella N, Huegel A, Weiser JN. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe. 2011;9(5)404–414. Doi:https://doi.org/10.1016/j.chom.2011.04.012 DOI: https://doi.org/10.1016/j.chom.2011.04.012

Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Res. 2018;256:153–165. Doi:https://doi.org/10.1016/j.virusres.2018.08.013 DOI: https://doi.org/10.1016/j.virusres.2018.08.013

Cullen BR. Viral and cellular messenger RNA targets of viral microRNAs. Nature. 2009;457(7228):421-425. Doi:https://doi.org/10.1038/nature07757 DOI: https://doi.org/10.1038/nature07757

Cursons J, Pillman KA, Scheer KG, Gregory PA, Foroutan M, Hediyeh-Zadeh S, et al. Combinatorial targeting by microRNAs co-ordinates post-transcriptional control of EMT. Cell Systems. 2018;7(1),77–91. Doi:https://doi.org/10.1016/j.cels.2018.05.019 DOI: https://doi.org/10.1016/j.cels.2018.05.019

de Oliveira DE, Müller-Coan BG, Pagano JS. Viral carcinogenesis beyond malignant transformation: EBV in the progression of human cancers. Trends Microbiol. 2016;24(8):649–664. Doi:https://doi.org/10.1016/j.tim.2016.03.008 DOI: https://doi.org/10.1016/j.tim.2016.03.008

Den Boon JA, Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol. 2010;64:241–256. Doi:https://doi.org/10.1146/annurev.micro.112408.134012 DOI: https://doi.org/10.1146/annurev.micro.112408.134012

Dong P, Xiong Y, Watari H, Hanley SJ, Konno Y, Ihira K, et al. miR-137 and miR-34a directly target SNAIL and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. J Exp Clin Cancer Res. 2016;35(1):1–9. Doi:https://doi.org/10.1186/s13046-016-0415-y DOI: https://doi.org/10.1186/s13046-016-0415-y

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. Doi:https://doi.org/10.1038/s41580-018-0080-4 DOI: https://doi.org/10.1038/s41580-018-0080-4

Dorey K, Amaya E. FGF signalling: Diverse roles during early vertebrate embryogenesis. Development. 2010;137(22):3731–3742. Doi:https://doi.org/10.1242/dev.037689 DOI: https://doi.org/10.1242/dev.037689

Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3(5):279–290. Doi:https://doi.org/10.1002/emmm.201100136 DOI: https://doi.org/10.1002/emmm.201100136

Gasperini P, Espigol-Frigole G, McCormick PJ, Salvucci O, Maric D, Uldrick TS, et al. Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through notch-dependent signaling. Cancer Res. 2012;72(5):1157–1169. Doi:https://doi.org/10.1158/0008-5472

Gaur N, Tikla T, Kaul R. Kaposi sarcoma-associated herpes virus (KSHV) latent protein LANA modulates cellular genes associated with epithelial-to-mesenchymal transition. Arch Virol. 2019;164(1):91-104. Doi:https://doi.org/10.1007/s00705-018-4060-y DOI: https://doi.org/10.1007/s00705-018-4060-y

Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):1–17. Doi:https://doi.org/10.1126/scisignal.2005189 DOI: https://doi.org/10.1126/scisignal.2005189

Gumbiner B. Generation and maintenance of epithelial cell polarity. Curr Opin Cell Biol. 1990;2(5):881–887. Doi:https://doi.org/10.1016/0955-0674(90)90087-U DOI: https://doi.org/10.1016/0955-0674(90)90087-U

Hall K, Ran S. Regulation of tumor angiogenesis by the local environment. Front Biosci. 2010;15:195-212. Doi:https://doi.org/10.2741/3615 DOI: https://doi.org/10.2741/3615

Hao J, Zhang Y, Deng M, Ye R, Zhao S, Wang Y, et al. MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer. 2014;135(5):1019–1027. Doi:https://doi.org/10.1002/ijc.28761 DOI: https://doi.org/10.1002/ijc.28761

Hay ED. An overview of epithelia-mesenchymal transformation. Acta Anat (Basel). 1995;154(1):8-20. Doi:https://doi.org/10.1159/000147748 DOI: https://doi.org/10.1159/000147748

Hay ED. EMT Concept and Examples from the Vertebrate Embryo. In: Savagner P, editor. Rise and Fall of Epithelial Phenotype: Concepts of epithelial-mesenchymal transition. New York: Plenum Publishers; 2005. 11 p.

He M, Zhang W, Bakken T, Schutten M, Toth Z, Jung JU, et al. Cancer angiogenesis induced by Kaposi Sarcoma-associated herpesvirus is mediated by EZH2. Cancer Res. 2012;72(14):3582–92. Doi:https://doi.org/10.1158/0008-5472.CAN-11-2876 DOI: https://doi.org/10.1158/0008-5472.CAN-11-2876

Hofman P, Vouret-Craviari V. Microbes-induced EMT at the crossroad of inflammation and cancer. Gut Microbes. 2012;3(3):176-185. Doi:https://doi.org/10.4161/gmic.20288 DOI: https://doi.org/10.4161/gmic.20288

Hu B, Xie S, Hu Y, Chen W, Chen X, Zheng Y, et al. Hepatitis C virus NS4B protein induces epithelial-mesenchymal transition by upregulation of SNAIL. Virol J. 2017;14(1):1–9. Doi:https://doi.org/10.1186/s12985-017-0737-1 DOI: https://doi.org/10.1186/s12985-017-0737-1

Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y et al. Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis. 2012;33(4):828–834. Doi:https://doi.org/10.1093/carcin/bgs030 DOI: https://doi.org/10.1093/carcin/bgs030

International Society of Differentiation. 2019. Disponible en: www.isdifferentiation.org/?page_id=10#history. Citado: 18 Abr 2019.

Jhan MK, Tsai TT, Chen CL, Tsai CC, Cheng YL, Lee YC, et al. Dengue virus infection increases microglial cell migration. Sci Rep. 2017;7(1),1–11. Doi:https://doi.org/10.1038/s41598-017-00182-z DOI: https://doi.org/10.1038/s41598-017-00182-z

Junqueira LC, Carneiro J. Histología básica: texto y atlas. 12 ed. Bogotá: Editorial Médica Panamericana S.A.; 2015. 556 p.

Kardong KV. Life History. In: Vertebrates: Comparative Anatomy, Function, Evolution 6 ed. Washington: McGraw Hill; 2011. p. 161–211.

Karim SM, Liu L, Le TD, Li J. Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics. 2016;17(1):72–84. Doi:https://doi.org/10.1186/s12864-015-2300-z DOI: https://doi.org/10.1186/s12864-015-2300-z

Kindrachuk J, Wahl-Jensen V, Safronetz D, Trost B, Hoenen T, Arsenault R, et al. Ebola virus modulates transforming growth factor b signaling and cellular markers of mesenchyme-like transition in hepatocytes. J Virol. 2014;88:9877–92. Doi:https://doi.org/10.1128/JVI.01410-14 DOI: https://doi.org/10.1128/JVI.01410-14

Kraft A, Rubin BP. Changing cells: An analysis of the concept of plasticity in the context of cellular differentiation. BioSocieties. 2016;11(4):497–525. Doi:https://doi.org/10.1057/s41292-016-0027-y DOI: https://doi.org/10.1057/s41292-016-0027-y

Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGFβ-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 2012;125:1259–1273. Doi:https://doi.org/10.1242/jcs.095299 DOI: https://doi.org/10.1242/jcs.095299

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. Doi:https://doi.org/10.1038/nrm3758 DOI: https://doi.org/10.1038/nrm3758

Leidinger P, Backes C, Dahmke IN, Galata V, Huwer H, Stehle I, et al. What makes a blood cell based miRNA expression pattern disease specific? A miRNome analysis of blood cell subsets in lung cancer patients and healthy controls. Oncotarget. 2014;5:9484–9497. Doi:https://doi.org/10.18632/oncotarget.2419 DOI: https://doi.org/10.18632/oncotarget.2419

Lin C, Zong J, Lin W, Wang M, Xu Y, Zhou R, et al. EBV-miR-BART8-3p induces epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma cells through activating NF-κB and Erk1/2 pathways. J Exp Clin Cancer Res, 2018; 37(1)283. Doi:https://doi.org/10.1186/s13046-018-0953-6 DOI: https://doi.org/10.1186/s13046-018-0953-6

Luria SE, Darnell JE, Baltimore D, Campbell A. General virology. New York: Wiley. 1953. 578 p.

Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol. 2016;17(2):97-109. Doi:https://doi.org/10.1038/nrm.2015.14 DOI: https://doi.org/10.1038/nrm.2015.14

Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta. 2014;1840(8):2621–2634. Doi:https://doi.org/10.1016/j.bbagen.2014.02.004 DOI: https://doi.org/10.1016/j.bbagen.2014.02.004

National Academy of Sciences. 2016. Disponible en: www.nasonline.org/member-directory/members/3000435.html. Citado: 18 Abr 2019.

Nieto MA. The Ins and Outs of the Epithelial to Mesenchymal Transition in Health and Disease. Annu Rev Cell DevBiol. 2011;27:347–376. Doi:10.1146/annurev-cellbio-092910-154036. Doi:https://doi.org/10.1146/annurev-cellbio-092910-154036 DOI: https://doi.org/10.1146/annurev-cellbio-092910-154036

Nieto MA. Context-specific roles of EMT programmes in cancer cell dissemination. Nat Cell Biol. 2017;19(5):416–418. Doi:https://doi.org/10.1038/ncb3520 DOI: https://doi.org/10.1038/ncb3520

Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21–45. Doi:https://doi.org/10.1016/j.cell.2016.06.028 DOI: https://doi.org/10.1016/j.cell.2016.06.028

Ospina-Bedoya M, Campillo-Pedroza N, Franco-Salazar JP, Gallego-Gómez JC. Computational Identification of Dengue Virus MicroRNA-Like Structures and their Cellular Targets. Bioinform Biol Insights. 2014;8:169–176. Doi:https://doi.org/10.4137/BBI.S13649 DOI: https://doi.org/10.4137/BBI.S13649

Park GB, Kim D, Kim YS, Kim S, Lee HK, Yang JW, et al. The Epstein-barr virus causes epithelial-mesenchymal transition in human corneal epithelial cells via Syk/Src and Akt/Erk signaling pathways. Invest Ophthalmol Vis Sci. 2014;55(3): 1770–1779. Doi:https://doi.org/10.1167/iovs.13-12988 DOI: https://doi.org/10.1167/iovs.13-12988

Qi X, Zhang L, Lu X. New insights into the epithelial-to-mesenchymal transition in cancer. Trends Pharmacol Sci. 2016;37(4):246-248. Doi:https://doi.org/10.1016/j.tips.2016.01.002 DOI: https://doi.org/10.1016/j.tips.2016.01.002

Qin Z, He W, Tang J, Ye Q, Dang W, Lu Y, et al. MicroRNAs provide feedback regulation of transition induced by growth factors. J Cell Physiol. 2016;231(1):120–129. Doi:https://doi.org/10.1002/jcp.25060 DOI: https://doi.org/10.1002/jcp.25060

Rawal P, Siddiqui H, Hassan M, Chaudhary MC, Tripathi DM, Nain V, et al. Endothelial cell-derived TGF-β Promotes Epithelial-Mesenchymal Transition via CD133 in HBx-infected Hepatoma cells. Front Oncol. 2019; 9, 308. Doi:https://doi.org/10.3389/fonc.2019.00308 DOI: https://doi.org/10.3389/fonc.2019.00308

Ren Y, Zhou X, Yang JJ, Liu X, Zhao XH, Wang QX, et al. AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis. Cancer Lett. 2015;362(2):174–182. Doi:https://doi.org/10.1016/j.canlet.2015.03.038 DOI: https://doi.org/10.1016/j.canlet.2015.03.038

Roa-Linares VC, Gallego-Gómez JC. La pérdida de función de la quinasa dependiente de ciclina 5 (CDK5) altera el citoesqueleto y reduce la infección in vitro por DENV-2. Acta biol. Colomb. 2019;24(3):474-485. Doi:http://dx.doi.org/10.15446/abc.v24n3.79347 DOI: https://doi.org/10.15446/abc.v24n3.79347

Rodriguez-Boulan E, Kreitzer G, Müsch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol. 2005;6(3):233–247. Doi:https://doi.org/10.1038/nrm1593 DOI: https://doi.org/10.1038/nrm1593

Rodriguez-Boulan E, Nelson WJ. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989;245(4919):718–725. Doi:https://doi.org/10.1126/science.2672330 DOI: https://doi.org/10.1126/science.2672330

Sayce AC, Miller JL, Zitzmann N. Targeting a host process as an antiviral approach against dengue virus. Trends Microbiol. 2010;18(7):323-330. Doi:https://doi.org/10.1016/j.tim.2010.04.003 DOI: https://doi.org/10.1016/j.tim.2010.04.003

Selcuklu SD, Donoghue MT, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37(Pt4):918–925. Doi:https://doi.org/10.1042/BST0370918 DOI: https://doi.org/10.1042/BST0370918

Shi CS, Huang NN, Kehrl JH. Regulator of G-protein signaling 3 isoform 1 (PDZ-RGS3) enhances canonical Wnt signaling and promotes epithelial mesenchymal transition. J Biol Chem. 2012;287(40):33480-87. Doi:https://doi.org/10.1074/jbc.M112.361873 DOI: https://doi.org/10.1074/jbc.M112.361873

Shih W, Yamada S. N-cadherin as a key regulator of collective cell migration in a 3D environment. Cell Adh Migr. 2012;6(6):513-517. Doi:https://doi.org/10.4161/cam.21766 DOI: https://doi.org/10.4161/cam.21766

Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 2012;8(1):1–21. Doi:https://doi.org/10.1371/journal.ppat.1002484 DOI: https://doi.org/10.1371/journal.ppat.1002484

Stewart C. Differentiation. Science Direct. International Society of Differentiation; 1973 ISSN:0301-4681 Supports open access. 95 p. Disponible en: www.sciencedirect.com/journal/differentiation. Citado: 18 Abr 2019.

Talbot LJ, Bhattacharya SD, Kuo PC. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int J Biochem Mol Biol. 2012;3(2):117–136.

Tang YT, Huang YY, Li JH, Qin SH, Xu Y, An TX, et al. Alterations in exosomal miRNA profile upon epithelial-mesenchymal transition in human lung cancer cell lines. BMC Genomics. 2018;19(1):802. Doi:https://doi.org/10.1186/s12864-018-5143-6 DOI: https://doi.org/10.1186/s12864-018-5143-6

Tata PR, Rajagopal J. Cellular plasticity: 1712 to the present day. Curr Opin Cell Biol. 2016;43:46–54. Doi:https://doi.org/10.1016/j.ceb.2016.07.005 DOI: https://doi.org/10.1016/j.ceb.2016.07.005

Thomas M, Banks L. Upsetting the balance: When viruses manipulate cell polarity control. J Mol Biol. 2018;430(19):3481–3503. Doi:https://doi.org/10.1016/j.jmb.2018.04.016 DOI: https://doi.org/10.1016/j.jmb.2018.04.016

Tiwari I, Yoon MH, Park BJ, Jang KL. Hepatitis C virus core protein induces epithelial-mesenchymal transition in human hepatocytes by upregulating E12/E47 levels. Cancer Lett. 2015;362(1):131–138. Doi:https://doi.org/10.1016/j.canlet.2015.03.032 DOI: https://doi.org/10.1016/j.canlet.2015.03.032

Tiwari N, Gheldof A, Tatari M, Christofori G. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22(3):194–207. Doi:https://doi.org/10.1016/j.semcancer.2012.02.013 DOI: https://doi.org/10.1016/j.semcancer.2012.02.013

Trembley A. Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de cornes. 1744. 324 p. Biodiversity Heritage Library (BHL). Disponible en: www.biodiversitylibrary.org/item/130183#page/1/mode/1up. Citado: 06 Sep 2019. DOI: https://doi.org/10.5962/bhl.title.64073

Vecchione A, Belletti B, Lovat F, Volinia S, Chiappetta G, Giglio S, et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci U S A. 2013;110(24):9845–9850. Doi:https://doi.org/10.1073/pnas.1305472110 DOI: https://doi.org/10.1073/pnas.1305472110

Waddington CH. The strategy of the genes. United Kingdom: Routledge; 1957. 274 p. DOI: https://doi.org/10.1001/jama.1957.72980210019019b

Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY, et al. miR-21 overexpression enhances TGFβ1-induced epithelial-to-mesenchymal transition by target SMAD7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol. 2014;392(1-2):163–172. Doi:https://doi.org/10.1016/j.mce.2014.05.018 DOI: https://doi.org/10.1016/j.mce.2014.05.018

Wang ZX, Bian HB, Wang JR, Cheng ZX, Wang KM, De W. Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer. J Surg Oncol. 2011;104(7):847–851. Doi:https://doi.org/10.1002/jso.22008 DOI: https://doi.org/10.1002/jso.22008

Welch-Reardon KM, Wu N, Hughes CC. A role for partial endothelial-mesenchymal transitions in angiogenesis? Arterioscler Thromb Vasc Biol. 2015;35(2):303-8. Doi:https://doi.org/10.1161/ATVBAHA.114.303220 DOI: https://doi.org/10.1161/ATVBAHA.114.303220

WHO. World Health Organization. Special Programme for Research and Training in Tropical Diseases (TDR). Dengue guidelines for diagnosis, treatment, prevention and control. Geneva 2009. 211 p.

Wong IY, Javaid S, Wong EA, Perk S, Haber DA, Toner M, et al. Collective and individual migration following the epithelial–mesenchymal transition. Nat Mater. 2014;13(11):1063–1071. Doi:https://doi.org/10.1038/NMAT4062 DOI: https://doi.org/10.1038/nmat4062

Xia L, Dai L, Yu Q, Yang Q. Persistent transmissible gastroenteritis virus infection enhances enterotoxigenic Escherichia coli k88 adhesion by promoting epithelial-mesenchymal transition in intestinal epithelial cells. J Virol, 2017;91(21):31. Doi:https://doi.org/10.1128/JVI.01256-17 DOI: https://doi.org/10.1128/JVI.01256-17

Ye X, Zhang HM, Qiu Y, Hanson PJ, Hemida MG, Wei W, et al. Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components. PLoS Pathog. 2014;10(4):1-19. Doi:https://doi.org/10.1371/journal.ppat.1004070 DOI: https://doi.org/10.1371/journal.ppat.1004070

Zaravinos A. The regulatory role of microRNAs in EMT and cancer. J Oncol. 2015; 865816:1–13. Doi:https://doi.org/10.1155/2015/865816 DOI: https://doi.org/10.1155/2015/865816

Zearo S, Kim E, Zhu Y, Zhao JT, Sidhu SB, Robinson BG, et al. MicroRNA-484 is more highly expressed in serum of early breast cancer patients compared to healthy volunteers. BMC Cancer. 2014;14:1–7. Doi:https://doi.org/10.1186/1471-2407-14-200 DOI: https://doi.org/10.1186/1471-2407-14-200

Cómo citar

APA

Hincapie, V. y Gallego-Gómez, J. C. (2020). TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. Acta Biológica Colombiana, 26(1), 105–115. https://doi.org/10.15446/abc.v26n1.79358

ACM

[1]
Hincapie, V. y Gallego-Gómez, J.C. 2020. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. Acta Biológica Colombiana. 26, 1 (dic. 2020), 105–115. DOI:https://doi.org/10.15446/abc.v26n1.79358.

ACS

(1)
Hincapie, V.; Gallego-Gómez, J. C. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. Acta biol. Colomb. 2020, 26, 105-115.

ABNT

HINCAPIE, V.; GALLEGO-GÓMEZ, J. C. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. Acta Biológica Colombiana, [S. l.], v. 26, n. 1, p. 105–115, 2020. DOI: 10.15446/abc.v26n1.79358. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/79358. Acesso em: 28 mar. 2024.

Chicago

Hincapie, Victoria, y Juan Carlos Gallego-Gómez. 2020. «TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS». Acta Biológica Colombiana 26 (1):105-15. https://doi.org/10.15446/abc.v26n1.79358.

Harvard

Hincapie, V. y Gallego-Gómez, J. C. (2020) «TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS», Acta Biológica Colombiana, 26(1), pp. 105–115. doi: 10.15446/abc.v26n1.79358.

IEEE

[1]
V. Hincapie y J. C. Gallego-Gómez, «TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS», Acta biol. Colomb., vol. 26, n.º 1, pp. 105–115, dic. 2020.

MLA

Hincapie, V., y J. C. Gallego-Gómez. «TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS». Acta Biológica Colombiana, vol. 26, n.º 1, diciembre de 2020, pp. 105-1, doi:10.15446/abc.v26n1.79358.

Turabian

Hincapie, Victoria, y Juan Carlos Gallego-Gómez. «TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS». Acta Biológica Colombiana 26, no. 1 (diciembre 28, 2020): 105–115. Accedido marzo 28, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/79358.

Vancouver

1.
Hincapie V, Gallego-Gómez JC. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. Acta biol. Colomb. [Internet]. 28 de diciembre de 2020 [citado 28 de marzo de 2024];26(1):105-1. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/79358

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

947

Descargas

Los datos de descargas todavía no están disponibles.