
Publicado
BIOINSECTICIDE POTENTIAL OF ETHANOL EXTRACTS FROM Persea americana (LAURACEAE) SEEDS ON Aedes aegypti MOSQUITOES
Potencial bioinsecticida de extractos etanólicos de semillas de Persea americana (Lauraceae) en mosquitos Aedes aegypti
DOI:
https://doi.org/10.15446/abc.v28n3.96277Palabras clave:
infectious diseases, insect, natural product, phytochemicals, safety (en)enfermedades infecciosas, insecto, producto natural, fitoquímicos, seguridad (es)
Descargas
Mosquitoes represent the most important agent disseminating infectious diseases like yellow fever, dengue, chikungunya, and malaria, among others. An essential strategy for its control is killing them at immature stages using industrial insecticides. However, those chemicals often generate resistance and affect the environment and human health. Agricultural and plant by-products constitute a new sustainable option to obtain harmless and eco-friendly bioinsecticides to prevent mosquitoes from spreading. This study aimed to investigate the phytochemical profile of Persea americana Mill (Lauraceae) seed extracts and their insecticide activity against Aedes aegypti at larval and pupal stages. The ethanol extracts from avocado seeds were obtained by Maceration/stirring (MaE) and Soxhlet extraction (SE) methods. The main chemical profile was determined by quantitative and UPLC assays. Insecticide activity was assessed by the exposition of mosquitoes at larval and pupal stages to seed extracts. Human cell lines were used to evaluate the cytotoxicity. Soxhlet methodology was more efficient in the extraction of P. americana seeds metabolites (42.13±1.76 mg/mL) compared with MaE (20.46±1.66 mg/mL) (p< 0.05). Additionally, SE showed a higher amount of polyphenols (5.12±0.18 mg/mL). The UPLC spectra analysis revealed the presence of polyphenols, mainly catechin, and neolignan constituents. Both extracts showed larvicidal and pupicidal effects, but SE was more active at lower concentrations. Moreover, no significant toxic effects on human monocytes and fibroblast cell lines were found after treatment. In sum, avocado seed by-products can be considered an eco-friendly insecticide and its use may help to substantially decrease the vector-transmitted diseases in developing countries.
Los mosquitos representan el agente más importante en la diseminación de enfermedades como la fiebre amarilla, dengue, chikungunya, malaria, etc. Una estrategia esencial para su control es la muerte en estadios inmaduros usando insecticidas industriales. Sin embargo, estos químicos generan resistencia y afectan el medioambiente y la salud humana. Los subproductos agrícolas y vegetales constituyen una nueva opción sostenible para obtener bioinsecticidas inocuos y eco-amigables, y prevenir la diseminación de los mosquitos. Este estudio tuvo como objetivo investigar el perfil fitoquímico de extractos de semillas de Persea americana Mill (Lauraceae), y su actividad insecticida contra Aedes aegypti en fases larval y pupa. Los extractos etanólicos fueron obtenidos mediante los métodos de maceración/agitación (MaE) y Soxhlet (SE). El perfil químico se determinó mediante ensayos cuantitativos y UPLC. La actividad insecticida se evaluó exponiendo los mosquitos a los extractos etanólicos. Se emplearon líneas celulares humanas para evaluar la citotoxicidad. La metodología Soxhlet fue más eficiente en la extracción de metabolitos de P. americana (42.13±1.76 mg/mL) comparado con MaE (20.46±1.66 mg/mL) (p< 0.05). Adicionalmente, SE mostró un contenido superior de polifenoles (5.12±0.18 mg/mL). El espectro UPLC reveló la presencia de polifenoles, principalmente catequina, y neolignanos. Ambos extractos manifestaron efectos larvicida y pupicida, pero SE resultó más activo a menores concentraciones. No se evidenciaron efectos tóxicos significativos en líneas celulares humanas de monocitos y fibroblastos. Los subproductos de semillas del aguacate pueden considerarse como insecticidas eco-amigables y su uso ayudaría a disminuir sustancialmente las enfermedades transmitidas por vectores en los países en desarrollo.
Referencias
Adesina, J. JA., Rajashekar, Y. and Ileke, K. (2016). Persea americana (Mill.) seed extracts: Potential herbal larvicide control measure against Anopheles gambiae Giles 1902 (Diptera: Culicidae) malaria vector. Int J Mosq Res,3(2),14–17.
Arnason, J. T., Sims, S. R., and Scott, I. M. (2012). Natural products from plants as insecticides. Encyclopedia of Life Support Systems (EOLSS), p. 1-8.
Beltrán, Y., Morris, H. J, Oliva, D., Batista, P., and Llauradó, G. (2021). Composición micoquímica y actividad antioxidante de la seta Pleurotus ostreatus en diferentes estados de crecimiento. Acta Biol Colomb. 26(1),89-98. https://dx.doi.org/10.15446/abc.v26n1.84519 DOI: https://doi.org/10.15446/abc.v26n1.84519
Berenguer-Rivas, C. A., Escalona-Arranz, J. C., Llauradó-Maury, G., Van der, A., Piazza, S., Méndez-Rodríguez, D., Foubert, K., Cos, P., and Pieters, L Anti-inflammatory effect of Adelia ricinella L. aerial parts. J Pharm Pharmacol, 73(4),553-559. https://doi.org/10.1093/jpp/rgaa057 DOI: https://doi.org/10.1093/jpp/rgaa057
Bhuyan, D. J., Alsherbiny, M. A., Perera, S., Low, M., Basu, A., Devi, O. A, Barooah, M. S., Li, C. G., and Papoutsis, K. (2019). The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants,8(10),426.https://dx.doi.org/10.3390/antiox8100426 DOI: https://doi.org/10.3390/antiox8100426
Chauret, D. C., Bernard, C. B., Arnason, J. T., Durst, T., Krishnamurty, H. G., Sanches-Vindas, P., Moreno, N., Roman, L. S., and Poveda, L. (1996). Insectcidal neolignans from Piper decurrens. J Nat Prod, 59(2),152-155. https://dx.doi.org/10.1021/n960036 DOI: https://doi.org/10.1021/np960036y
Dahmana, H., and Mediannikov, O. (2020). Mosquitoborne diseases emergence/resurgence and how to effectively control it biologically. Pathogens,9(4),310. https://dx.doi.org/10.3390/pathogens9040310 DOI: https://doi.org/10.3390/pathogens9040310
Arun, K. D., Suresh, K. J., and Swamy, P. S. (2015). Larvicidal activity and leaf essential oil composition of three species of genus Atalantia from south India. Int J Mosq Res, 2(3),25-29.
Dabas, D., Shegog, R. M., Ziegler, G. R and., Lambert, J. D. (2013). Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr Pharm Design,19(34),6133-6140. https://dx.doi.org/10.2174/1381612811319340007 DOI: https://doi.org/10.2174/1381612811319340007
Egbuonu, A. M. C., Opara, I. C., Onyeabo, C., and Uchenna, N. O. (2018). Proximate, functional, antinutrient and antimicrobial properties of avocado pear (Persea americana) seeds. J Nutr Health Food Eng, 8(1). https://dx.doi.org/10.15406/jnhfe.2018.08.00260 DOI: https://doi.org/10.15406/jnhfe.2018.08.00260
Ejiofor, N. C., Ezeagu, I. E., Ayoola, M. B., and Umera, E. A. (2018). Determination of the chemical composition of avocado (Persea americana) seed. Adv Food Technol Nutr Sci Open J, https://dx.doi.org/10.17140/AFTNSOJ-SE-2-107 DOI: https://doi.org/10.17140/AFTNSOJ-SE-2-107
Elumalai, D., Hemalatha, P., and Kaleena, P. K. (2017). Larvicidal activityand GC–MS analysis of Leuca saspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Saudi Soc Agric Sci, 16(4), 306-313. https://dx.doi.org/10.1016/j.jssas.2015.10.003 DOI: https://doi.org/10.1016/j.jssas.2015.10.003
Elumalai, D., Hemavathi, M., Hemalatha, P., Deepaa, C. V., and Kaleena, P. K. (2016). Larvicidal activity of catechin isolated from Leucas aspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res, 115(3),1203-1212. https://dx.doi.org/10.1007/s00436-015-4856-6 DOI: https://doi.org/10.1007/s00436-015-4856-6
Escalona, J. C., Rodríguez, J., Pérez, R., Cañizares, J., Sierra, G., Morris, H., and Licea, I. (2011). Metabolites extraction optimization in Tamarindus indica L. leaves. Bol Latinoam Caribe Plant Med Aromat, 10(4),359-369.
Evangelou, E., Ntritsos, G., Chondrogiorgi, M., Kavvoura, F. K., Hernández, A. F., Ntzani, E. E., and Tzoulaki, I. (2016). Exposure to pesticides and diabetes: a systematic review and meta-analysis. Environ Int, 91,60-68. https://dx.doi.org/10.1016/j.envint.2016.02.013 DOI: https://doi.org/10.1016/j.envint.2016.02.013
Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., and Segura-Carretero, A. (2018). Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESIQTOF-MS. Food Res Int, 105,752-763. https://dx.doi.org/10.1016/j.foodres.2017.11.082 DOI: https://doi.org/10.1016/j.foodres.2017.11.082
García, J., Tuenter, E., Escalona-Arranz, J. C., Llauradó, G., Cos, P., and Pieters, L. (2019). Antiprotozoal activity of leaf extracts and isolated constituents of Croton linearis. J Ethopharmacol, 236,250-257.https://dx.doi.org/10.1016/j.jep.2019.01.049 DOI: https://doi.org/10.1016/j.jep.2019.01.049
Gautam, K., Kumar, P., and Poonia, S. (2013). Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographi spaniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti. J Vector Borne Dis, 50(3),171-178.
Hikal, W. M., Baeshen, R. S., and Said-Al, H. A. H. (2017). Botanical insecticide as simple extractives for pest control. Cogent Biol, 3(1). https://dx.doi.org/10.1080/23312025.2017.1404274 DOI: https://doi.org/10.1080/23312025.2017.1404274
Kumar, V., and Kumar, P. (2019). Pesticides in agriculture and environment: Impacts on human health. In: Kumar, V., Kumar, R., Singh, J., and Kumar, P. (Eds.) editors. Contaminants in agriculture and environment: health risks and remediation (pp. 76-95). Agro Environ Media. https://doi.org/10.26832/AESA-2019-CAE-0160-07 DOI: https://doi.org/10.26832/AESA-2019-CAE-0160-07
Leite, J. J. G., Brito, É. H. S., Cordeiro, R. A., Brilhante, R. S. N., Sidrim, J. J. C., Bertini, L. M., de Morais, S. M., and Rocha, M. F. G. (2009). Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev Soc Bras Med Trop, 42(2), 110-113. https://dx.doi.org/10.1590/s0037-86822009000200003 DOI: https://doi.org/10.1590/S0037-86822009000200003
Molina-Bertrán, S. C., Martins-Mendonça, P., Reyes-Tur, B., Queiroz, M. M. C., Escalona-Arranz, J. C., García-Díaz, J., and Guisado-Bourzac, F. (2018). Effects of Persea americana Mill. seed extract on the postembryonic development of Musca domestica (Diptera: Muscoide). J Pharm Pharmacogn Res, 6(2), 96-107. DOI: https://doi.org/10.56499/jppres17.262_6.2.96
Muema, J. M., Bargul, J. L., Nyanjom, S. G., Mutunga, J. M., and Njeru, S. N. (2016). Potential of Camellia sinensis proanthocyanidins-rich fraction for controlling malaria mosquitoes population through disruption of larval development. Parasite Vector, 9,512. https://dx.doi.org/10.1186/s13071-016-1789-6 DOI: https://doi.org/10.1186/s13071-016-1789-6
Modise, S. A., and Ashafa, A. M. T. (2016). Larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus, Foeniculum vulgare and Tagetes minuta against Culex quinquefasciatus mosquitoes. Trop J Pharm Res, 15(5),965-972. https://dx.doi.org/10.4314/tjpr.v15i5.10 DOI: https://doi.org/10.4314/tjpr.v15i5.10
Mulkay, T., Paumier, A., Aranguren, M., Herrera, O., de Giron, E. V., and Grande, J. (2010). Diagnóstico de las enfermedades fungosas de mayor incidencia durante la poscochesa de la papaya (Carica papaya L), el mango (Mangifera indica L) y el aguacate (Persea americana Mill) en tres localidades frutícolas de Cuba. Ver Citrit-Frut, 27(2),23-30.
Narciso, J. O. A., Soares, R. O., Mallet, J. R., Guimaraes, A. E., Chaves, C. O. M., Barbosa-Filho, J. M., and., Maleck, M. (2014). Burchellin: Study of bioactivity against Aedes agypti. Parasite Vector. 4,172. https://dx.doi.org/10.1186/1756-3305-7-172 DOI: https://doi.org/10.1186/1756-3305-7-172
Peréz, D., Van der P., Toledo, M. E, Ceballos, E., Fabré, F., and Lefevre, P. (2018). Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba. PLoS Neglected Trop Dis, 12(1) https://dx.doi.org/10.1371/journal.pntd.0006115 DOI: https://doi.org/10.1371/journal.pntd.0006115
Perumalsamy, H., Jang, M. J., Kim, J. R., Kadarkarai, M., and Ahn, Y. J. (2015). Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasite Vector, 8(1),237. https://dx.doi.org/10.1186/s13071-015-0848-8 DOI: https://doi.org/10.1186/s13071-015-0848-8
Prabhu, K., Murugan, K., Nareshkumar, A., Ramasubramanian, N., and Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac J Trop Biomed. 1(2),124-129. https://dx.doi.org/10.1016/S2221-1691(11)60009-9 DOI: https://doi.org/10.1016/S2221-1691(11)60009-9
Senthil-Nathan, S. (2020). A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front Physiol, 10,1591. https://dx.doi.org/10.3389/fphys.2019.01591 DOI: https://doi.org/10.3389/fphys.2019.01591
Siriwattanarungsee, S., Sukontason, K. L., Olson, J. K., Chailapakul, O., and., Sukontason, K. (2008). Efficacy of neem extract against the blowfly and housefly. J Parasitol Res, 103(3),535–544. https://dx.doi.org/10.1007/s00436-008-1004-6 DOI: https://doi.org/10.1007/s00436-008-1004-6
Soonwera, M., and Phasomkusolsil, S. (2017). Adulticidal, larvicidal, pupicidal and oviposition deterrent activities of essential oil from Zanthoxylum limonella (Rutacea) against Aedes aegypti (L) and Culex quinquefasciatus (Say). Asian Pacific Trop Biomed, 7(11),967-978. https://dx.doi.org/10.1016/j.apjtb.2017.09.019 DOI: https://doi.org/10.1016/j.apjtb.2017.09.019
Tsai, I. L., Hsieh, C. F., Duh, C. Y., and Chen, I. S. (1996). Cytotoxic neolignans from Persea obovatifolia. Phytochemistry, 43(6),1261-1263. https://dx.doi.org/10.1016/S0031-9422(96)00509-2 DOI: https://doi.org/10.1016/S0031-9422(96)00509-2
WHO. (2005). World Health Organization. Guidelines for laboratory and field-testing of mosquito larvicides. World Health Organization Communicable disease control, prevention and eradication. WHO pesticide evaluation scheme. WHO, Geneva, Switzerland. https://apps.who.int/iris/handle/10665/69101
Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., and Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Trop Dis, 14(1). https://dx.doi.org/10.1371/journal.pntd.0007831 DOI: https://doi.org/10.1371/journal.pntd.0007831
Yasir, M., Das, S., and Kharya, M. D. (2010). The phytochemical and pharmacological profile of Persea americana Mill. Pharmacog Rev,4(7),77. https://dx.doi.org/10.4103/0973-7847.65332 DOI: https://doi.org/10.4103/0973-7847.65332
Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E., and James, A. (2019). Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric,5(1), 1601544. https://dx.doi.org/10.1080/23311932.2019.1601544 DOI: https://doi.org/10.1080/23311932.2019.1601544
Zahran, H. E. D. M., and Abdelgaleil, S. A. M. (2011). Larvacidal, adulticidal and growth inhibitory effects of monoterpenes on Culex pipiens L. (Diptera:Culicidae). J Asia-Pacific Entomol, 14(1),46-51. https://dx.doi.org/10.1016/j.aspen.2010.11.013 DOI: https://doi.org/10.1016/j.aspen.2010.11.013
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).