Publicado

2024-01-02

METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA

Methodologies Employed in the Study of Protein Interactions and Applications in the Case of Plant-bacteria Relationship

DOI:

https://doi.org/10.15446/abc.v29n1.98597

Palabras clave:

anticuerpos, bio-moléculas, inmunidad, patógeno, proteína fusión (es)
antibody, immunity, pathogen, fusion protein, biomolecules (en)

Descargas

Autores/as

La maquinaría que permite el correcto funcionamiento celular involucra principalmente proteínas. Para cumplir con sus actividades, las proteínas establecen interacciones entre ellas. Para su estudio se han empleado principalmente las técnicas de doble híbrido de levaduras, co-immunoprecipitación, GST pull-down, localización celular, BiFC y FRET. En esta revisión se presenta una descripción de estas metodologías. Además se presenta, a manera de caso de estudio, una breve descripción de cómo la aplicación de estas metodologías ha permitido ahondar en el conocimiento de los mecanismos que se activan durante la relación que establecen las plantas con las bacterias fitopatógenas.

Proteins are the molecular machinery that allows the correct functioning of the cells. To achieve these functions, proteins establish interaction between them. There are several molecular techniques to understand the interactions, such as yeast-two-hybrid, coimmunoprecipitation, GST pull-down, cell localization, BiFC, and FRET. This review presents a general description of these technologies and a brief explanation of how their application expanded the knowledge of the mechanisms activated during the interactions between plants and their bacterial pathogens. 

Referencias

Alberts, B. (1998). The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell, 92(3):291–294. https://doi.org/10.1016/S0092-8674(00)80922-8 DOI: https://doi.org/10.1016/S0092-8674(00)80922-8

Axtell, M. J. y Staskawicz, B. J. (2003). Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell, 112(3): 369–377. https://doi.org/10.1016/s0092-8674(03)00036-9 DOI: https://doi.org/10.1016/S0092-8674(03)00036-9

Barberini, M. L. y Muschietti, J. P. (2017). Coimmunoprecipitation of Plant Receptor Kinases. Methods in Molecular Biology (Clifton, N.J.), 1621:109–112. https://doi.org/10.1007/978-1-4939-7063-6_10 DOI: https://doi.org/10.1007/978-1-4939-7063-6_10

Ben Rejeb, I., Pastor, V. y Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 3:458–475. https://doi.org/10.3390/plants3040458 DOI: https://doi.org/10.3390/plants3040458

Bolte, S. y Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 224(3):213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x DOI: https://doi.org/10.1111/j.1365-2818.2006.01706.x

Boutrot, F. y Zipfel, C. (2017). Function, Discovery and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annual Review of Phytopathology, 55:257–286. https://doi.org/10.1146/annurev-phyto-080614-120106. DOI: https://doi.org/10.1146/annurev-phyto-080614-120106

Clontech. (2009). Matchmaker ® Gold Yeast Two-Hybrid System User Manual. Consultado 20/11/2021. Disponible en: https://www.takarabio.com/documents/User%20Manual/Matchmaker%20Gold%20Yeast%20Two/Matchmaker%20Gold%20Yeast%20Two-Hybrid%20System%20User%20Manual.pdf

Cook, D. E., Mesarich, C. H. y Thomma, B. P. H. J. (2015). Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology, 53:541–563. https://doi.org/10.1146/annurev-phyto-080614-120114 DOI: https://doi.org/10.1146/annurev-phyto-080614-120114

Chalfie, M. (1995). Green fluorescent protein. Photochemistry and Photobiology, 62(4):651–656. https://doi.org/10.1111/j.1751-1097.1995.tb08712.x DOI: https://doi.org/10.1111/j.1751-1097.1995.tb08712.x

Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J. D. G., Felix, G. y Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 448(7152):497–500. https://doi.org/10.1038/nature05999 DOI: https://doi.org/10.1038/nature05999

Chisholm, S. T., Coaker, G., Day, B. y Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4):803–814. https://doi.org/10.1016/j.cell.2006.02.008 DOI: https://doi.org/10.1016/j.cell.2006.02.008

Feng, F., Yang, F., Rong, W., Wu, X., Zhang, J., Chen, S., He, C. y Zhou, J.M. (2012). A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases. Nature, 485(7396):114–118. https://doi.org/10.1038/nature10962 DOI: https://doi.org/10.1038/nature10962

Finley, R. L. y Mairiang, D. (2018). Two-Hybrid Systems to Measure Protein–Protein Interactions. In eLS, John Wiley & Sons, Ltd (Ed.). https://doi.org/10.1002/9780470015902.a0005980.pub3 DOI: https://doi.org/10.1002/9780470015902.a0005980.pub3

Förster, T. (2012). Energy migration and fluorescence. Journal of Biomedical Optics, 17(1):011002. https://doi.org/10.1117/1.JBO.17.1.011002 DOI: https://doi.org/10.1117/1.JBO.17.1.011002

Göhre, V., Spallek, T., Häweker, H., Mersmann, S., Mentzel, T., Boller, T., de Torres, M., Mansfield, J. W. y Robatzek, S. (2008). Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Current Biology: CB, 18(23):1824–1832. https://doi.org/10.1016/j.cub.2008.10.063 DOI: https://doi.org/10.1016/j.cub.2008.10.063

Halter, T., Imkampe, J., Mazzotta, S., Wierzba, M., Postel, S., Bücherl, C., Kiefer, C., Stahl, M., Chinchilla, D., Wang, X., Nürnberger, T., Zipfel, C., Clouse, S., Borst, J. W., Boeren, S., de Vries, S. C., Tax, F. y Kemmerling, B. (2014). The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Current Biology: CB, 24(2):134–143. https://doi.org/10.1016/j.cub.2013.11.047 DOI: https://doi.org/10.1016/j.cub.2013.11.047

Imkampe, J., Halter, T., Huang, S., Schulze, S., Mazzotta, S., Schmidt, N., Manstretta, R., Postel, S., Wierzba, M., Yang, Y., van Dongen, W. M. A. M., Stahl, M., Zipfel, C., Goshe, M. B., Clouse, S., de Vries, S. C., Tax, F., Wang, X. y Kemmerling, B. (2017). The Arabidopsis Leucine-Rich Repeat Receptor Kinase BIR3 Negatively Regulates BAK1 Receptor Complex Formation and Stabilizes BAK1. The Plant Cell, 29(9):2285–2303. https://doi.org/10.1105/tpc.17.00376 DOI: https://doi.org/10.1105/tpc.17.00376

Jones, J. D. G. y Dangl, J. L. (2006). The plant immune system. Nature, 444(7117):323–329. https://doi.org/10.1038/nature05286 DOI: https://doi.org/10.1038/nature05286

Kaboord, B. y Perr, M. (2008). Isolation of proteins and protein complexes by immunoprecipitation. Methods in Molecular Biology (Clifton, N.J.), 424:349–364. https://doi.org/10.1007/978-1-60327-064-9_27 DOI: https://doi.org/10.1007/978-1-60327-064-9_27

Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A. y Zipfel, C. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell, 54(1):43–55. https://doi.org/10.1016/j.molcel.2014.02.021 DOI: https://doi.org/10.1016/j.molcel.2014.02.021

Kim, S.Y. y Hakoshima, T. (2019). GST Pull-Down Assay to Measure Complex Formations. Methods in Molecular Biology (Clifton, N.J.), 1893:273–280. https://doi.org/10.1007/978-1-4939-8910-2_20 DOI: https://doi.org/10.1007/978-1-4939-8910-2_20

Kodama, Y. y Hu, C.D. (2012). Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. BioTechniques, 53(5):285–298. https://doi.org/10.2144/000113943 DOI: https://doi.org/10.2144/000113943

Kourelis, J. y van der Hoorn, R. A. L. (2018). Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. The Plant Cell, 30(2):285–299. https://doi.org/10.1105/tpc.17.00579 DOI: https://doi.org/10.1105/tpc.17.00579

Lalonde, S., Ehrhardt, D. W., Loqué, D., Chen, J., Rhee, S. Y. y Frommer, W. B. (2008). Molecular and cellular approaches for the detection of protein–protein interactions: Latest techniques and current limitations. The Plant Journal, 53:610–635. https://doi.org/10.1111/j.1365-313X.2007.03332.x DOI: https://doi.org/10.1111/j.1365-313X.2007.03332.x

Lampugnani, E. R., Wink, R. H., Persson, S. y Somssich, M. (2018). The Toolbox to Study Protein–Protein Interactions in Plants. Critical Reviews in Plant Sciences, 37(4):308–334. https://doi.org/10.1080/07352689.2018.1500136 DOI: https://doi.org/10.1080/07352689.2018.1500136

Lewis, J. D., Lee, A. H.Y., Hassan, J. A., Wan, J., Hurley, B., Jhingree, J. R., Wang, P. W., Lo, T., Youn, J.-Y., Guttman, D. S. y Desveaux, D. (2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. PNAS, 110(46):18722–18727. https://doi.org/10.1073/pnas.1315520110 DOI: https://doi.org/10.1073/pnas.1315520110

Li, L., Kim, P., Yu, L., Cai, G., Chen, S., Alfano, J. R. y Zhou, J.M. (2016). Activation-Dependent Destruction of a Coreceptor by a Pseudomonas syringae Effector Dampens Plant Immunity. Cell Host y Microbe, 20(4):504–514. https://doi.org/10.1016/j.chom.2016.09.007 DOI: https://doi.org/10.1016/j.chom.2016.09.007

Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L. y He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. PNAS, 107(1):496–501. https://doi.org/10.1073/pnas.0909705107 DOI: https://doi.org/10.1073/pnas.0909705107

Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T. P., He, P. y Shan, L. (2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innateimmunity. Science, 332(6036):1439–1442. https://doi.org/10.1126/science.1204903 DOI: https://doi.org/10.1126/science.1204903

Ma, W., Wang, Y. y McDowell, J. (2018). Focus on Effector-Triggered Susceptibility. Molecular Plant-Microbe Interactions : MPMI, 31(1):5. https://doi.org/10.1094/MPMI-11-17-0275-LE DOI: https://doi.org/10.1094/MPMI-11-17-0275-LE

Mackey, D., Holt, B. F.,Wiig, A. y Dangl, J. L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 108(6):743–754. https://doi.org/10.1016/s0092-8674(02)00661-x DOI: https://doi.org/10.1016/S0092-8674(02)00661-X

Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R. y Dangl, J. L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 112(3):379–389. https://doi.org/10.1016/s0092-8674(03)00040-0 DOI: https://doi.org/10.1016/S0092-8674(03)00040-0

Mishra, B., Kumar, N. yMukhtar, M. (2021). Network biology to uncover functional and structural properties of the plant immune system. Current Opinion in Plant Biology, 62. https://doi.org/10.1016/j.pbi.2021.102057 DOI: https://doi.org/10.1016/j.pbi.2021.102057

Paiano, A., Margiotta, A., De Luca, M. y Bucci, C. (2019). Yeast Two-Hybrid Assay to Identify Interacting Proteins. Current Protocols in Protein Science, 95(1). https://doi.org/10.1002/cpps.70 DOI: https://doi.org/10.1002/cpps.70

Qin, J., Zhou, X., Sun, L., Wang, K., Yang, F., Liao, H., Rong, W., Yin, J., Chen, H., Chen, X. y Zhang, J. (2018). The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. The New Phytologist, 220(1):219–231. https://doi.org/10.1111/nph.15287 DOI: https://doi.org/10.1111/nph.15287

Rodríguez-Negrete, E., Bejarano, E. R. y Castillo, A. G. (2014). Using the yeast two-hybrid system to identify proteinprotein interactions. Methods in Molecular Biology (Clifton,N.J.), 1072:241–258. https://doi.org/10.1007/978-1-62703-631-3_18 DOI: https://doi.org/10.1007/978-1-62703-631-3_18

Shaner, N. C., Patterson, G. H. y Davidson, M. W. (2007). Advances in fluorescent protein technology. Journal of Cell Science, 120(24):4247–4260. https://doi.org/10.1242/jcs.005801 DOI: https://doi.org/10.1242/jcs.005801

Speth, C., Toledo-Filho, L. A. A. y Laubinger, S. (2014). Immunoprecipitation-based analysis of protein-protein interactions. Methods in Molecular Biology), 1158:175–185. https://doi.org/10.1007/978-1-4939-0700-7_11 DOI: https://doi.org/10.1007/978-1-4939-0700-7_11

Struk, S., Jacobs, A., Martín-Fontecha, E., Gevaert, K., Cubas, P.y Goormachtig, S. (2019). Exploring the protein–protein interaction landscape in plants. Plant Cell Environ, 42(2):387– 409. https://doi.org/10.1111/pce.13433 DOI: https://doi.org/10.1111/pce.13433

Sun, Y., Zhu, Y. X., Balint-Kurti, P. J.y Wang, G. F. (2020). Fine-Tuning Immunity: Players and Regulators for Plant NLRs. Trends in plant science, 25(7):695–713. https://doi.org/10.1016/j.tplants.2020.02.008 DOI: https://doi.org/10.1016/j.tplants.2020.02.008

van der Hoorn, R. A. L. y Kamoun, S. (2008). From Guard to Decoy: a new model for perception of plant pathogen effectors. The Plant Cell, 20(8):2009–2017. https://doi.org/10.1105/tpc.108.060194 DOI: https://doi.org/10.1105/tpc.108.060194

Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K. y Kudla, J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal: For Cell and Molecular Biology, 40(3):428–438. https://doi.org/10.1111/j.1365-313X.2004.02219.x DOI: https://doi.org/10.1111/j.1365-313X.2004.02219.x

Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.-F., Chabannes, M., Arlat, M., Chen, S., He, C., Noël, L. D. y Zhou, J.M. (2015). The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants. Cell Host y Microbe, 18(3):285–295. https://doi.org/10.1016/j.chom.2015.08.004 DOI: https://doi.org/10.1016/j.chom.2015.08.004

Watson, J., Baker, T., Bell, S., Gann, A., Levine, M., Losick, R. (2004). Molecular Biology of the Gene. 4th Edición. Editorial Pearson.

Xing, S., Wallmeroth, N., Berendzen, K. W. y Grefen, C. (2016). Techniques for the analysis of protein–protein interactions in vivo. Plant Physiology, 171:727–758. https://doi.org/10.1104/pp.16.00470 DOI: https://doi.org/10.1104/pp.16.00470

Yuan, M., Ngou, B. P. K., Ding, P.y Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity, Current Opinion in Plant Biology, 62. https://doi.org/10.1016/j.pbi.2021.102030 DOI: https://doi.org/10.1016/j.pbi.2021.102030

Zhong, G., Zhu, Q., Li, Y., Liu, Y. y Wang, H. (2017). Once for All: A Novel Robust System for Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in Plants. Frontiers in Plant Science, 8. https://doi.org/10.3389/FPLS.2017.01071 DOI: https://doi.org/10.3389/fpls.2017.01071

Cómo citar

APA

López Carrascal, C. E. (2024). METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA. Acta Biológica Colombiana, 29(1), 5–15. https://doi.org/10.15446/abc.v29n1.98597

ACM

[1]
López Carrascal, C.E. 2024. METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA. Acta Biológica Colombiana. 29, 1 (ene. 2024), 5–15. DOI:https://doi.org/10.15446/abc.v29n1.98597.

ACS

(1)
López Carrascal, C. E. METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA. Acta biol. Colomb. 2024, 29, 5-15.

ABNT

LÓPEZ CARRASCAL, C. E. METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA. Acta Biológica Colombiana, [S. l.], v. 29, n. 1, p. 5–15, 2024. DOI: 10.15446/abc.v29n1.98597. Disponível em: https://revistas.unal.edu.co/index.php/actabiol/article/view/98597. Acesso em: 14 jul. 2024.

Chicago

López Carrascal, Camilo Ernesto. 2024. «METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA». Acta Biológica Colombiana 29 (1):5-15. https://doi.org/10.15446/abc.v29n1.98597.

Harvard

López Carrascal, C. E. (2024) «METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA», Acta Biológica Colombiana, 29(1), pp. 5–15. doi: 10.15446/abc.v29n1.98597.

IEEE

[1]
C. E. López Carrascal, «METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA», Acta biol. Colomb., vol. 29, n.º 1, pp. 5–15, ene. 2024.

MLA

López Carrascal, C. E. «METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA». Acta Biológica Colombiana, vol. 29, n.º 1, enero de 2024, pp. 5-15, doi:10.15446/abc.v29n1.98597.

Turabian

López Carrascal, Camilo Ernesto. «METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA». Acta Biológica Colombiana 29, no. 1 (enero 2, 2024): 5–15. Accedido julio 14, 2024. https://revistas.unal.edu.co/index.php/actabiol/article/view/98597.

Vancouver

1.
López Carrascal CE. METODOLOGÍAS PARA EL ESTUDIO DE LAS INTERACCIONES PROTEICAS Y APLICACIONES EN EL CASO DE LA RELACIÓN PLANTA-BACTERIA. Acta biol. Colomb. [Internet]. 2 de enero de 2024 [citado 14 de julio de 2024];29(1):5-15. Disponible en: https://revistas.unal.edu.co/index.php/actabiol/article/view/98597

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

296

Descargas

Los datos de descargas todavía no están disponibles.