Published

2022-11-09

Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach

Ajuste de curvas de crecimiento de plantas de café durante la etapa de crecimiento de almácigo: Un enfoque funcional

DOI:

https://doi.org/10.15446/agron.colomb.v40n3.101333

Keywords:

Coffea arabica L., nonlinear regression, goodness of fit, leaf area, absolute growth rate (en)
Coffea arabica L., regresión no lineal, criterios de ajuste, área foliar, tasa absoluta de crecimiento (es)

Downloads

Authors

  • Andrés Felipe León-Burgos Centro Nacional de Investigaciones del Café (Cenicafé) - Departamento de Fitotecnia - Manizales / Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias - Departamento de Agronomía https://orcid.org/0000-0002-9765-0223
  • Carlos Ramírez Centro Nacional de Investigaciones del Café (Cenicafé) - Departamento de Fitomejoramiento Genético - Manizales, Caldas - Colombia https://orcid.org/0000-0003-4119-2806
  • José Raúl Rendón Sáenz Centro Nacional de Investigaciones del Café (Cenicafé) - Departamento de Fitotecnia - Manizales, Caldas - Colombia https://orcid.org/0000-0002-5676-4670
  • Luis Carlos Imbachi-Quinchua Centro Nacional de Investigaciones del Café (Cenicafé) - Departamento de Biometría - Manizales, Caldas - Colombia https://orcid.org/0000-0002-4356-694X
  • Carlos Andrés Unigarro-Muñoz Centro Nacional de Investigaciones del Café (Cenicafé) - Departamento de Fisiología Vegetal - Manizales, Caldas - Colombia https://orcid.org/0000-0002-7344-3211
  • Helber Enrique Balaguera-Lopez Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias - Departamento de Agronomía https://orcid.org/0000-0003-3133-0355

The growth patterns of coffee plants are determined by interactions between genetic, physiological, and climate factors. The objective of this study was to evaluate the growth patterns of coffee plants in the nursery under the climatic conditions of Chinchiná, Caldas, Colombia, during the first semester of 2019. Measurements were carried out in the Cenicafé 1 variety during six months. Growth parameters such as leaf area, number of leaves, height, stem diameter, and length of the main root were evaluated every 15 d after transplanting (DAT) in 20 plants and the averages of absolute growth (Ĝ) rate of each growth variable were calculated. For the total leaf area, total number of leaves, and stem height, a sigmoidal-type growth curve was adjusted, while the growth curve was linear for the stem diameter (R2 = 0.97) and main root length (R2 = 0.95). Average values were obtained for 520 cm2 for total leaf area, with an Ĝ of 3.31 cm2 d-1, 11 for total leaves (Ĝ 0.055 leaves d-1), 30.23 cm for height (Ĝ 0.155 cm d-1), 4.87 mm for stem diameter (Ĝ 0.199 mm d-1), and 28.80 cm for main root length (Ĝ 0.087 cm d-1) at 180 DAT. These results suggest that growth curves could be a useful tool for describing the growth patterns of coffee seedlings during the nursery stage of growth.

Los patrones de crecimiento de las plantas de café están determinados por las interacciones entre los factores genéticos, fisiológicos y climáticos. El objetivo de este estudio fue evaluar los patrones de crecimiento de las plantas de café en etapa de almácigo bajo condiciones climáticas de Chinchiná, Caldas, Colombia, durante el primer semestre de 2019. Las mediciones se realizaron en plantas de la variedad “Cenicafé 1” durante seis meses. Se evaluaron los parámetros de crecimiento como área foliar, número de hojas, altura, diámetro del tallo y longitud de la raíz principal, cada 15 d después del trasplante (DDT) de 20 plantas  y se calculó la tasa promedio de crecimiento absoluto (Ĝ) de cada variable de crecimiento. Para el área foliar total, número total de hojas y altura del tallo, se ajustó una curva de crecimiento tipo sigmoidal, mientras que fue lineal para el diámetro del tallo (R2 = 0.97) y longitud de la raíz principal (R2 = 0.95). Se obtuvieron valores promedio a los 180 DDT de 520 cm2 de área foliar total con Ĝ 3.31 cm2 d-1, 11 hojas totales (Ĝ 0.055 hojas d-1), 30.23 cm de altura (Ĝ 0.155 cm d-1), 4.87 mm para diámetro del tallo (Ĝ 0.199 mm d-1) y 28.80 cm para la longitud de la raíz principal (Ĝ 0.087 cm d-1). Estos resultados sugieren que las curvas de crecimiento pueden ser una herramienta útil para describir los patrones de crecimiento de las plantas de café durante la etapa de almácigo.

References

Arcila, P. J. (2007). Crecimiento y desarrollo de la planta de café. In J. Arcila Pulgarín, F. Farfán, A. M. Moreno, L. F. Salazar, & E. Hincapié (Eds.), Sistemas de producción de café de Colombia (pp. 22–60). Cenicafé. http://hdl.handle.net/10778/720

Arcila, P. J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1), 19–27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.x DOI: https://doi.org/10.1111/j.1744-7348.2002.tb00191.x

Arcila, P. J., & Chaves C. B. (2005). Desarrollo foliar del cafeto en tres densidades de siembra. Cenicafé, 46(1), 5–20.

Bakhshandeh, E., Pirdashti, H., Vahabinia, F., & Gholamhossieni, M. (2020). Quantification of the effect of environmental factors on seed germination and seedling growth of Eruca (Eruca sativa) using mathematical models. Journal of Plant Growth Regulation, 39(1), 190–204. https://doi.org/10.1007/s00344-019-09974-1 DOI: https://doi.org/10.1007/s00344-019-09974-1

Bote, A. D., & Vos, J. (2017). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, 83, 39–46. https://doi.org/10.1016/j.njas.2017.09.002 DOI: https://doi.org/10.1016/j.njas.2017.09.002

Castillo, J. Á., & Andrade, D. (2021). Coffee (Coffea arabica L, var. Castillo) seedling growth in Nariño, Colombia. Revista de Ciencias Agrícolas, 38(1), 62–74. https://doi.org/10.22267/rcia.213801.145 DOI: https://doi.org/10.22267/rcia.213801.145

Ceballos-Sierra, F., & Dall’Erba, S. (2021). The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems, 190, Article 103126. https://doi.org/10.1016/j.agsy.2021.103126 DOI: https://doi.org/10.1016/j.agsy.2021.103126

Criollo, H., Muñoz, J., Checa, J., & Noguera, W. (2019). Initial growth of coffee (Coffea arabica L. var) castillo in the coffee zone of Nariño. Revista de Ciencias Agrícolas, 36, 124–137. https://doi.org/10.22267/rcia.1936e.112 DOI: https://doi.org/10.22267/rcia.1936E.112

DaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), 485–510. https://doi.org/10.1590/S1677-04202007000400014 DOI: https://doi.org/10.1590/S1677-04202007000400014

Encalada, M., Soto Carreño, F., & Morales Guevara, D. (2016). Coffee (Coffea arabica L.) seedling growth with four shade levels under two soil and climate conditions of Ecuador. Cultivos Tropicales, 37(2), 72–78. https://doi.org/10.13140/RG.2.1.4335.7681

Federación Nacional de Cafeteros de Colombia-FNC. (2021). Publicaciones: Informe de Gestión 2021. https://federaciondecafeteros.org/app/uploads/2022/05/IG-2021_Digital.pdf

Gaitán, A. L., Villegas, C., Rivillas, C. A., & Hincapié, E. (2011). Almácigos de café: Calidad fitosanitaria, manejo y siembra en el campo. Avances Técnicos Cenicafé, 404, 1–8.

Grothendieck, G. (2022). nls2: Non-Linear Regression with Brute Force. R package version 0.3-3. https://CRAN.R-project.org/package=nls2

Hunt, R. (1979). Plant growth analysis: The rationale behind the use of the fitted mathematical function. Annals of Botany, 43(2), 245–249. https://doi.org/10.1093/oxfordjournals.aob.a085632 DOI: https://doi.org/10.1093/oxfordjournals.aob.a085632

Hunt, R. (1990). Basic growth analysis. Springer. DOI: https://doi.org/10.1007/978-94-010-9117-6

Hunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of Botany, 90(4), 485–488. https://doi.org/10.1093/aob/mcf214 DOI: https://doi.org/10.1093/aob/mcf214

Jaramillo R., A. (2018). El clima de la caficultura Colombiana. FNC-Cenicafé. https://www.cenicafe.org/es/index.php/nuestras_publicaciones/libros/publicaciones_el_clima_de_la_caficultura_en_colombia DOI: https://doi.org/10.38141/cenbook-0031

Kaufmann, K. W. (1981). Fitting and using growth curves. Oecologia, 49(3), 293–299. https://doi.org/10.1007/BF00347588 DOI: https://doi.org/10.1007/BF00347588

León-Burgos, A. F., Unigarro, C. A., & Balaguera-López, H. E. (2022). Soil waterlogging conditions affect growth, water status, and chlorophyll “a” fluorescence in coffee plants (Coffea arabica L.). Agronomy, 12, Article 1270. https://doi.org/10.3390/agronomy12061270 DOI: https://doi.org/10.3390/agronomy12061270

Liu, J.-H., Yan, Y., Ali, A., Yu, M.-F., Xu, Q.-J., Shi, P.-J., & Chen, L. (2018). Simulation of crop growth, time to maturity and yield by an improved sigmoidal model. Scientific Reports, 8(1), Article 7030. https://doi.org/10.1038/s41598-018-24705-4 DOI: https://doi.org/10.1038/s41598-018-24705-4

Maldonado, C. E. M., & Ángel-Giraldo, L. (2020). Resistencia genética a la enfermedad de la cereza del café en variedades cultivadas en Colombia. Cenicafé, 71(1), 69–90. https://doi.org/10.38141/10778/1121 DOI: https://doi.org/10.38141/10778/1121

Maradiaga, W. D., Evangelista, A. W. P., Alves Junior, J., & Honorato, M. V. (2017). Growing of coffee seedlings on different substrates and fertilized with lithothamium. Revista Facultad Nacional de Agronomía Medellín, 70(2), 8177–8182. https://doi.org/10.15446/rfna.v70n2.64522 DOI: https://doi.org/10.15446/rfna.v70n2.64522

Moraes, G. A. B. K., Chaves, A. R. M., Martins, S. C. V., Barros, R. S., & DaMatta, F. M. (2010). Why is it better to produce coffee seedlings in full sunlight than in the shade? A morphophysiological approach. Photosynthetica, 48(2), 199–207. https://doi.org/10.1007/s11099-010-0025-4 DOI: https://doi.org/10.1007/s11099-010-0025-4

Nab, C., & Maslin, M. (2020). Life cycle assessment synthesis of the carbon footprint of Arabica coffee: Case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom. Geo: Geography and Environment, 7(2), Article e00096. https://doi.org/10.1002/geo2.96 DOI: https://doi.org/10.1002/geo2.96

Neiva, E., França, A. C., Grazziotti, P. H., Porto, D. W. B., Araújo, F. H. V., & Leal, F. D. S. (2019). Growth of seedlings and young plants of coffee in composts of textile industry residues. Revista Brasileira de Engenharia Agrícola e Ambiental, 23, 188–195. https://doi.org/10.1590/18071929/agriambi.v23n3p188-195 DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n3p188-195

Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., & Turnbull, L. A. (2012). How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods in Ecology and Evolution, 3(2), 245–256. https://doi.org/10.1111/j.2041-210X.2011.00155.x DOI: https://doi.org/10.1111/j.2041-210X.2011.00155.x

Plataforma Agroclimática Cafetera-Agroclima. (2019). Portal web. https://agroclima.cenicafe.org/

Poorter, H., & Garnier, E. (1996). Plant growth analysis: An evaluation of experimental design and computational methods. Journal of Experimental Botany, 47(9), 1343–1351. https://doi.org/10.1093/jxb/47.9.1343 DOI: https://doi.org/10.1093/jxb/47.9.1343

R Development Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Rakocevic, M., & Matsunaga, F. T. (2018). Variations in leaf growth parameters within the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration. Annals of Botany, 122(1), 117–131. https://doi.org/10.1093/aob/mcy042 DOI: https://doi.org/10.1093/aob/mcy042

Rendón, J. R. (2020). Administración de sistemas de producción de café a libre exposición solar. In Centro Nacional de Investigaciones de Café (Ed.), Manejo agronómico de los sistemas de producción de café (pp. 34–71). Cenicafé. https://doi.org/10.38141/10791/0002_2 DOI: https://doi.org/10.38141/10791/0002_2

Rodríguez-López, N. F., Martins, S. C. V., Cavatte, P. C., Silva, P. E. M., Morais, L. E., Pereira, L. F., Reis, J. V., Ávila, R. T., Godoy, A. G., Lavinski, A. O., & DaMatta, F. M. (2014). Morphological and physiological acclimations of coffee seedlings to growth over a range of fixed or changing light supplies. Environmental and Experimental Botany, 102, 1–10. https://doi.org/10.1016/j.envexpbot.2014.01.008 DOI: https://doi.org/10.1016/j.envexpbot.2014.01.008

Sadeghian, K. S. S. (2014). Manejo integrado de nutrientes para una caficultura sostenible. Suelos Ecuatoriales, 44(2), 74–89.

Sadeghian, S., & Ospina-Penagos, C. (2021). Manejo nutricional de café durante la etapa de almácigo. Avances Técnicos Cenicafé, 532, 1–8. https://doi.org/10.38141/10779/0532 DOI: https://doi.org/10.38141/10779/0532

Schmildt, E. R., Amaral, J. A. T., Schmildt, O., & Santos, J. S. (2014). Análise comparativa de equações para estimativa da área foliar em cafeeiros. Coffee Science, 9(2), 155–167.

Silveira, H. R. O., Santos, M. O., Alves, J. D., Souza, K. R. D., Andrade, C. A., & Alves, R. G. M. (2014). Growth effects of water excess on coffee seedlings (Coffea arabica L.). Acta Scientiarum Agronomy, 36, 211–218. https://doi.org/10.4025/actasciagron.v36i2.17557 DOI: https://doi.org/10.4025/actasciagron.v36i2.17557

Souza, A. J., Guimarães, R. J., Colombo, A., Sant᾽Ana, J. A. V., & Castanheira, D. T. (2016). Quantitative analysis of growth in coffee plants cultivated with a water-retaining polymer in an irrigated system. Revista Ciência Agronômica, 47, 162–171. https://doi.org/10.5935/1806-6690.20160019 DOI: https://doi.org/10.5935/1806-6690.20160019

Tatagiba, S. D., Pezzopane, J. E. M., & Reis, E. F. (2010). Crescimento vegetativo de mudas de café arábica (Coffea arabica L.) submetidas a diferentes níveis de sombreamento. Coffee Science, 5(3), 251–261. http://www.sbicafe.ufv.br/handle/123456789/5413

Torres, V., Barbosa, I., Meyer, R., Noda, A., & Sarduy, L. (2012). Criterios de bondad de ajuste en la selección de modelos no lineales en la descripción de comportamientos biológicos. Revista Cubana de Ciencia Agrícola, 46(4), 345–350.

Unigarro-Muñoz, C. A., Hernández-Arredondo, J. D., Montoya-Restrepo, E. C., Medina-Rivera, R. D., Ibarra-Ruales, L. N., Carmona-González, C. Y., & Flórez-Ramos, C. P. (2015). Estimation of leaf area in coffee leaves (Coffea arabica L.) of the Castillo® variety. Bragantia, 74(4), 412–416. https://doi.org/10.1590/1678-4499.0026 DOI: https://doi.org/10.1590/1678-4499.0026

Voorend, W., Lootens, P., Nelissen, H., Roldán-Ruiz, I., Inzé, D., & Muylle, H. (2014). LEAF-E: A tool to analyze grass leaf growth using function fitting. Plant Methods, 10(1), Article 37. https://doi.org/10.1186/1746-4811-10-37 DOI: https://doi.org/10.1186/1746-4811-10-37

Weih, M., Adam, E., Vico, G., & Rubiales, D. (2022). Application of crop growth models to assist breeding for intercropping: Opportunities and challenges. Frontiers in Plant Science, 13, Article 720486. https://doi.org/10.3389/fpls.2022.720486 DOI: https://doi.org/10.3389/fpls.2022.720486

How to Cite

APA

León-Burgos, A. F., Ramírez, C., Rendón Sáenz, J. R., Imbachi-Quinchua, L. C., Unigarro-Muñoz, C. A. and Balaguera-Lopez, H. E. (2022). Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach. Agronomía Colombiana, 40(3), 344–353. https://doi.org/10.15446/agron.colomb.v40n3.101333

ACM

[1]
León-Burgos, A.F., Ramírez, C., Rendón Sáenz, J.R., Imbachi-Quinchua, L.C., Unigarro-Muñoz, C.A. and Balaguera-Lopez, H.E. 2022. Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach. Agronomía Colombiana. 40, 3 (Sep. 2022), 344–353. DOI:https://doi.org/10.15446/agron.colomb.v40n3.101333.

ACS

(1)
León-Burgos, A. F.; Ramírez, C.; Rendón Sáenz, J. R.; Imbachi-Quinchua, L. C.; Unigarro-Muñoz, C. A.; Balaguera-Lopez, H. E. Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach. Agron. Colomb. 2022, 40, 344-353.

ABNT

LEÓN-BURGOS, A. F.; RAMÍREZ, C.; RENDÓN SÁENZ, J. R.; IMBACHI-QUINCHUA, L. C.; UNIGARRO-MUÑOZ, C. A.; BALAGUERA-LOPEZ, H. E. Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach. Agronomía Colombiana, [S. l.], v. 40, n. 3, p. 344–353, 2022. DOI: 10.15446/agron.colomb.v40n3.101333. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/101333. Acesso em: 26 mar. 2025.

Chicago

León-Burgos, Andrés Felipe, Carlos Ramírez, José Raúl Rendón Sáenz, Luis Carlos Imbachi-Quinchua, Carlos Andrés Unigarro-Muñoz, and Helber Enrique Balaguera-Lopez. 2022. “Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach”. Agronomía Colombiana 40 (3):344-53. https://doi.org/10.15446/agron.colomb.v40n3.101333.

Harvard

León-Burgos, A. F., Ramírez, C., Rendón Sáenz, J. R., Imbachi-Quinchua, L. C., Unigarro-Muñoz, C. A. and Balaguera-Lopez, H. E. (2022) “Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach”, Agronomía Colombiana, 40(3), pp. 344–353. doi: 10.15446/agron.colomb.v40n3.101333.

IEEE

[1]
A. F. León-Burgos, C. Ramírez, J. R. Rendón Sáenz, L. C. Imbachi-Quinchua, C. A. Unigarro-Muñoz, and H. E. Balaguera-Lopez, “Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach”, Agron. Colomb., vol. 40, no. 3, pp. 344–353, Sep. 2022.

MLA

León-Burgos, A. F., C. Ramírez, J. R. Rendón Sáenz, L. C. Imbachi-Quinchua, C. A. Unigarro-Muñoz, and H. E. Balaguera-Lopez. “Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach”. Agronomía Colombiana, vol. 40, no. 3, Sept. 2022, pp. 344-53, doi:10.15446/agron.colomb.v40n3.101333.

Turabian

León-Burgos, Andrés Felipe, Carlos Ramírez, José Raúl Rendón Sáenz, Luis Carlos Imbachi-Quinchua, Carlos Andrés Unigarro-Muñoz, and Helber Enrique Balaguera-Lopez. “Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach”. Agronomía Colombiana 40, no. 3 (September 1, 2022): 344–353. Accessed March 26, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/101333.

Vancouver

1.
León-Burgos AF, Ramírez C, Rendón Sáenz JR, Imbachi-Quinchua LC, Unigarro-Muñoz CA, Balaguera-Lopez HE. Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach. Agron. Colomb. [Internet]. 2022 Sep. 1 [cited 2025 Mar. 26];40(3):344-53. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/101333

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Mariam Vásquez-Martínez, Pedro Lizarazo-Peña, Enrique Darghan, Liz Patricia Moreno-Fonseca, Stanislav Magnitskiy. (2022). Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery. Agronomía Colombiana, 40(3), p.361. https://doi.org/10.15446/agron.colomb.v40n3.105039.

2. Andrés Felipe León-Burgos, José Raúl Rendón Sáenz, Luis Carlos Imbachi Quinchua, Mayra Alejandra Toro-Herrera, Carlos Andrés Unigarro, Valentina Osorio, Helber Enrique Balaguera-López. (2024). Increased fruit load influences vegetative growth, dry mass partitioning, and bean quality attributes in full-sun coffee cultivation. Frontiers in Sustainable Food Systems, 8 https://doi.org/10.3389/fsufs.2024.1379207.

3. Mayerlin Orjuela-Angulo, Helber Enrique Balaguera-Lopez, Gerhard Fischer. (2024). Determining of thermal time and base temperature during the reproductive phase of the Japanese plum in the tropical Andes. Revista Colombiana de Ciencias Hortícolas, 18(2) https://doi.org/10.17584/rcch.2024v18i2.17433.

4. Asharp Godwin, Simone Pieralli, Svetla Sofkova-Bobcheva, Andrew Ward, Craig McGill. (2024). Comparing vegetative growth patterns of cultivated (Daucus carota L. subsp. sativus) and wild carrots (Daucus carota L. subsp. carota) to eliminate genetic contamination from weed to crop. Journal of Agriculture and Food Research, 16, p.101213. https://doi.org/10.1016/j.jafr.2024.101213.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 4
  • Captures
  • Mendeley - Readers: 8

Article abstract page views

909

Downloads