Warming reduces the root density and wheat colonization by arbuscular mycorrhizal fungi in the Yaqui Valley, Mexico
El calentamiento reduce la densidad de raíces y la colonización de hongos micorrízicos arbusculares en trigo en el Valle del Yaqui, México
DOI:
https://doi.org/10.15446/agron.colomb.v40n3.102857Keywords:
climate change, soil fungi, rhizosphere, Triticum durum Desf. (en)cambio climático, hongos del suelo, rizosfera, Triticum durum Desf. (es)
Downloads
Some studies on the impact of climate changes on wheat have been carried out, but few have explained the possible variations in root morphology and associated microbial diversity. The present study aimed to evaluate the effect of canopy temperature increases of 2°C in wheat during three experimental crop cycles on the initial and final root density and the presence of symbiotic association with arbuscular mycorrhizal fungi (AMF) under field conditions. The warming treatment resulted in the highest percentage of roots (51%) at a greater depth than the control. The warming caused a 38% decrease in the presence of AMF and a 20% decrease in the number of spores per kilogram of soil. The warming treatment generated stress intensities of 18 and 17% in the amount of spore per kilogram of soil and percentage of colonization, respectively.
Se han realizado algunos estudios sobre el impacto del cambio climático en el trigo, pero pocos han explicado las posibles variaciones en la morfología de las raíces y la diversidad microbiana asociada. El presente estudio tuvo como objetivo evaluar el efecto del aumento de 2°C en la temperatura del dosel en trigo durante tres ciclos experimentales de cultivo, sobre la densidad de raíces inicial y final, y la presencia en asociación simbiótica con hongos micorrízicos arbusculares (HMA) en condiciones de campo. El tratamiento térmico mostró el mayor porcentaje de raíces (51%) a mayor profundidad que el control. El calentamiento provocó una disminución del 38% en la presencia de HMA y una disminución del 20% en la cantidad de esporas por kilogramo de suelo. El tratamiento térmico generó intensidades de estrés de 18 y 17% en la cantidad de esporas por kilogramo de suelo y en el porcentaje de colonización, respectivamente.
References
Ahmed, M., Claudio, S.O., Nelson, R., & Higgins S. (2017). Ensembles modeling approach to study climate change impacts on wheat. In EGU General Assembly Conference [Abstracts]. Munich: European Geosciences Union. 19, 340.
Argentel-Martínez, L., Arredondo, T., Yépez, E. A., & Garatuza-Payán, J. (2019). Effects of experimental warming on peroxidase, nitrate reductase and glutamine synthetase activities in wheat. Agronomy Research, 17(1), 22–32. https://doi.org/10.15159/AR.19.003
Argentel-Martínez, L., Garatuza-Payán, J., Yépez, E. A., Arredondo, T., & de los Santos Villalobos, S. (2019). Water regime and osmotic adjustment under warming conditions on wheat in the Yaqui Valley, Mexico. PeerJ, 7, Article e7029. https://doi.org/10.7717/peerj.7029 DOI: https://doi.org/10.7717/peerj.7029
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A, Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., …, & Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/NCLIMATE2470 DOI: https://doi.org/10.1038/nclimate2470
Asseng, S., Martre, P., Maiorano, A., Rötter, R. P., O’Leary, G. J., Fitzgerald, G. J., Girousse, C., Motzo, R., Giunta, F., Ali Babar, M., Reynolds, M. P., Kheir, A. M. S, Thorburn, P. J., Waha, K., Ruane, A. C., Aggarwal, P. K., Ahmed, M., Balkovic, J., Basso, B., …, & Ewert, F. (2019). Climate change impact and adaptation for wheat protein. Global Change Biology, 25(1), 155–173. https://doi.org/10.1111/gcb.14481 DOI: https://doi.org/10.1111/gcb.14481
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, Article 1068. https://doi.org/10.3389/fpls.2019.01068 DOI: https://doi.org/10.3389/fpls.2019.01068
Bockheim, J. G., Gennadiyev, A. N., Hartemink, A. E., & Brevik, E. C. (2014). Soil-forming factors and soil taxonomy. Geoderma, 226, 231–237. https://doi.org/10.1016/j.geoderma.2014.02.016 DOI: https://doi.org/10.1016/j.geoderma.2014.02.016
Chen, R., Huang, J. W., Chen, Z. K., Xu, Y., Liu, J., & Ge, Y. H. (2019). Effect of root density of wheat and okra on hydraulic properties of an unsaturated compacted loam. European Journal of Soil Science, 70(3), 493–506. https://doi.org/10.1111/ejss.12766 DOI: https://doi.org/10.1111/ejss.12766
Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., Bindi, M., & Asseng, S. (2017). Contribution of crop models to adaptation in wheat. Trends in Plant Science, 22(6), 472–490. https://doi.org/10.1016/j.tplants.2017.02.003 DOI: https://doi.org/10.1016/j.tplants.2017.02.003
Ding, G. C., Radl, V., Schloter-Hai, B., Jechalke, S., Heuer, H., Smalla, K., & Schloter, M. (2014). Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS ONE, 9(3), Article e92958. https://doi.org/10.1371/journal.pone.0092958 DOI: https://doi.org/10.1371/journal.pone.0092958
Fernández, G. C. J. (1993). Effective selection criteria for assessing plant tolerance. In C. G. Kuo (Ed.), Adaptation of food crops to temperature and water stress. International Symposium on Adaptation of Food Crops to Temperature and Water Stress (pp. 257–270), 13–18 August 1992. Publication number 93–410. Taiwan: Asian Vegetable Research and Development Center.
Figueroa-López, P., Félix-Fuentes, J. L., Fuentes-Dávila, G., Vallenzuela-Herrera, V., Chávez-Villalba, G., & Mendoza-Lugo, J. A. (2010). CIRNO C2008, una nueva variedad de trigo cristalino con alto potencial de rendimiento para Sonora. Revista Mexicana de Ciencias Agrícolas, 1(5), 739–744.
Garatuza-Payán, J., Argentel-Martinez, L., Yépez, E. A., & Arredondo, T. (2018). Initial response of phenology and yield components of wheat (Triticum durum L., CIRNO C2008) under experimental warming field conditions in the Yaqui Valley. PeerJ, 6, Article e5064. https://doi.org/10.7717/peerj.5064 DOI: https://doi.org/10.7717/peerj.5064
Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244. https://doi.org/10.1016/S0007-1536(63)80079-0 DOI: https://doi.org/10.1016/S0007-1536(63)80079-0
González, R., Canales, A., & Marin, L. E. (2003). Salinización de suelos y acuíferos: el caso del Valle del Yaqui, Sonora, México. Revista Contacto Ecológico. H. Ayuntamiento de Cajeme, 5, 19–23.
Giménez, V. D., Miralles, D. J., García, G. A., & Serrago, R. A. (2021). Can crop management reduce the negative effects of warm nights on wheat yield? Field Crops Research, 261, Article 108010. https://doi.org/10.1016/j.fcr.2020.108010 DOI: https://doi.org/10.1016/j.fcr.2020.108010
Ingraffia, R., Amato, G., Frenda, A. S., & Giambalvo, D. (2019). Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLoS ONE, 14(3), Article e0213672. https://doi.org/10.1371/journal.pone.0213672 DOI: https://doi.org/10.1371/journal.pone.0213672
IPCC. (2014). Climate Change (2014): synthesis report. Intergovernmental Panel on Climate Change. In R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneve: IPCC, 151.
Impa, S. M., Raju, B., Hein, N. T., Sandhu, J., Prasad, P. V., Walia, H., & Jagadish, S. K. (2021). High night temperature effects on wheat and rice: Current status and way forward. Plant, Cell & Environment, 44(7), 2049–2065. https://doi.org/10.1111/pce.14028 DOI: https://doi.org/10.1111/pce.14028
Kimball, B. A. (2015). Using canopy resistance for infrared heater control when warming open-field plots. Agronomy Journal, 107(3), 1105–1112. https://doi.org/10.2134/agronj14.0418 DOI: https://doi.org/10.2134/agronj14.0418
Kolmogorov, A. T. (1933). Basic concepts of probability theory. Berlin: Julius Springer.
Liu, B., Martre, P., Ewert, F., Porter, J. R., Challinor, A. J., Müller, C., Ruane, A. C., Waha, K, Thorburn, P. J., Aggarwal, P. K., Ahmed, M., Balkovič, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., De Sanctis, G., Dumont, B., Espadafor, … & Asseng, S. (2019). Global wheat production with 1.5 and 2.0°C above preindustrial warming. Global Change Biology, 25(4), 1428–1444. https://doi.org/10.1111/gcb.14542 DOI: https://doi.org/10.1111/gcb.14542
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L., & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115(3), 495–501. https://doi.org/10.111/j.1469-8137.1990.tb00476.x DOI: https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
Mosleh, Z., Salehi, M. H., Jafari, A., & Borujeni, I. E. (2017). Comparison of capability of digitizing methods to predict soil classification according to the soil taxonomy and world reference base for soil resources. Majallah-i āb va Khāk, 30(4), 1180–1191. https://doi.org/10.22067/jsw.v30i4.47091
Nell, J. P., & van Huyssteen, C. W. (2014). Soil classification groups to quantify primary salinity, sodicity and alkalinity in South African soils. South African Journal of Plant and Soil, 31(3), 117–125. https://doi.org/10.1080/02571862.2014.921941 DOI: https://doi.org/10.1080/02571862.2014.921941
NOM-021-RECNAT-2000. (2002). Norma Oficial Mexicana que establece las especificaciones de fertilizada, salinidad y clasificación de suelos. Estudios, muestreos y análisis. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf
Oussible, M. R. K. C., Crookston, R. K., & Larson, W. E. (1992). Subsurface compaction reduces the root and shoot growth and grain yield of wheat. Agronomy Journal, 84(1), 34–38. https://doi.org/10.2134/agronj1992.00021962008400010008x DOI: https://doi.org/10.2134/agronj1992.00021962008400010008x
Parra-Cota, F. I., Coronel-Acosta, C. B., Amézquita-Avilés, C. F., Santos-Villalobos, S., & Escalante-Martínez, D. I. (2018). Diversidad metabólica de microorganismos edáficos asociados al cultivo de maíz en el Valle del Yaqui, Sonora. Revista Mexicana de Ciencias Agrícolas, 9(2), 431–442. https://doi.org/10.29312/remexca.v9i2.1083 DOI: https://doi.org/10.29312/remexca.v9i2.1083
Phillips, J. M., & Hayman. D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycologycal Society, 55(1), 158–161. https://doi.org/10.1016/S0007-1536(70)80110-3 DOI: https://doi.org/10.1016/S0007-1536(70)80110-3
Sadeghi, H., Mohamadi, H., Shamsipour, A., Zarei, K., & Karimi, M. (2022). Spatial relations between climatic variables and wheat yield in Iran. Geography and Development, 20(68), 150–173. https://doi.org/10.22111/J10.22111.2022.7008
Sangabriel-Conde, W., Negrete-Yankelevich, S., Maldonado-Mendoza, I. E., & Trejo-Aguilar, D. (2014). Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biology Fertility Soils, 50(2), 405–414. https://doi.org/10.1007/s00374-013-0847-x DOI: https://doi.org/10.1007/s00374-013-0847-x
Schalamuk, S., Velazquez, S., Chidichimo, H., & Cabello M. (2006). Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia, 98(1), 16–22. https://doi.org/10.1080/15572536.2006.11832708 DOI: https://doi.org/10.1080/15572536.2006.11832708
Sieverding, E. (1991). Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit, GTZ No. 224. Eschborn.
Smith, S. E., & Read, D. (2008). The symbionts forming arbuscular mycorrhizas. In S. E. Smith, & D. Read (Eds.), Mycorrhizal symbiosis (3rd. ed., pp. 13–41). Academic Press. DOI: https://doi.org/10.1016/B978-012370526-6.50003-9
StatSoft, Inc. (2014). Statistica (data analysis software system), Version 12. http://www.statsoft.com
Tennant, D. (1975). A test of a modif ied line intersect method of estimating root length. Journal of Ecology, 63(3), 995–1001. https://doi.org/10.2307/2258617 DOI: https://doi.org/10.2307/2258617
Walker, C., Mize, C. W., & McNabb Jr., H. S. (1982). Populations of endogonaceous fungi at two locations in central Iowa. Canadian Journal of Botany, 60(12), 2518–2529. https://doi.org/10.1139/b82-305 DOI: https://doi.org/10.1139/b82-305
Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., Pavan, W., Shelia, V., Kim, K. S., Hernandez-Ochoa, I. M., Wallach, D., Porter, C. H., Stockle, C. O., Zhu, Y., & Asseng, S. (2019). A SIMPLE crop model. European Journal of Agronomy, 104, 97–106. https://doi.org/10.1016/j.eja.2019.01.009 DOI: https://doi.org/10.1016/j.eja.2019.01.009
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Ravi Kumar, Ajay Kumar, Rahul Kumar Dhaka, Madhvi Chahar, Sandeep Kumar Malyan, Arvind Pratap Singh, Anuj Rana. (2023). Bioinoculants: Biological Option for Mitigating global Climate Change. , p.87. https://doi.org/10.1007/978-981-99-2973-3_4.
2. Leandris Argentel-Martínez, Jorge González Aguilera, Carlos Avila-Amador, Ofelda Peñuelas-Rubio, Fabio Steiner, Jaime Garatuza-Payán. (2024). Contribution of QuitoMax® to the hormonal and enzymatic metabolism in tomato under saline stress. Ciência e Agrotecnologia, 48 https://doi.org/10.1590/1413-7054202448014523.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.