Published

2022-12-31

Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA)

Análisis discriminante para estimar el punto de diferenciación meristemática basado en indicadores morfométricos en banano (Musa AAA)

DOI:

https://doi.org/10.15446/agron.colomb.v40n3.103234

Keywords:

allometry, pseudostem, phenological stages, non-destructive methods (en)
alometría, seudotallo, etapas fenológicas, métodos no destructivos (es)

Downloads

Authors

In the banana crop, leaf area is a fundamental trait for production; however, monitoring this variable during a cycle is difficult due to the structural characteristics of the plant, and a method for its determination is necessary. Therefore, the objective of this research was to propose a model for estimating total leaf area by measuring the cross-sectional area of the pseudostem to identify when meristematic differentiation occurs. In plants between F10 and flowering, functional leaves were measured for length, width, and dry mass. Cross-sectional area was calculated every 10 cm from the base to 70 cm, at ⅓, ½ of the plant height and up to the last pair of leaves. From the principal components, the cross-sectional measurement at 50 cm was selected, obtaining a nonlinear model for indirect estimation of leaf area. Subsequently, Fisher’s linear discriminant analysis was used with the parameters associated with the number of leaves emitted and the estimated leaf area to obtain the cutoff point as the centroid of the extracted components. As an indicator for the approximate identification of the moment of meristem differentiation, the emission of leaf 12 was generated, which determines the phenological stage (vegetative-reproductive) of the plant. The results describe tools to follow up the growth in the productive units to facilitate crop monitoring, allowing the generation of differential production approaches.

En el cultivo de banano el área foliar es una característica fundamental para la producción; no obstante, el monitoreo de esta variable durante el ciclo se dificulta por las características estructurales de la planta, siendo necesario algún método para su determinación. Por lo tanto, el objetivo de esta investigación fue proponer un modelo de estimación del área foliar total, mediante la medición del área de la sección transversal del seudotallo, para identificar cuando ocurre la diferenciación meristemática. En plantas entre F10 y floración se midió en las hojas funcionales largo, ancho y masa seca. El área de la sección transversal se calculó a 10 cm de la base hasta 70 cm, a ⅓, ½ de la altura de la planta y hasta el último par de hojas. A partir de los componentes principales se seleccionó la medida de la sección transversal a 50 cm, obteniéndose un modelo no lineal de estimación indirecta del área foliar. Posteriormente se utilizó el análisis discriminante lineal de Fisher con los parámetros asociados al número de hojas emitidas y al área foliar estimada para obtener el punto de corte como centroide de los componentes extraídos. Se generó como indicador para la identificación aproximada del momento de la diferenciación del meristemo la emisión de la hoja 12, y con esto la determinación de la etapa fenológica (vegetativa-reproductiva) en la cual se encuentra la planta. Los resultados describen herramientas para hacer seguimiento al crecimiento en las unidades productivas que facilitarían el monitoreo del cultivo, permitiendo generar enfoques de producción diferenciales.

References

Belalcázar, S. (1991). El cultivo del plátano (Musa AAB Simmonds) en el trópico. Cali, ICA – CIID – CDCQ – INIBAP. Manual de Asistencia Técnica No. 50.

Borja Agamez, W., Osorio, J. D., Herrera, N., & Sánchez, J. D. (2018). Fundamentos en fenología de banano Cavendish (Musa AAA) en cultivo establecido. Boletín Técnico Cenibanano, 1, 1–4.

Briggs, W. (2016). Uncertainty. The soul of modeling, probability & statistics. Springer. https://link.springer.com/book/10.1007/978-3-319-39756-6 DOI: https://doi.org/10.1007/978-3-319-39756-6

Chang, S., Wu, Z., Sun, W., Qiao, L., Zeng, Q., Zhang, J., & Shu, H. (2018). A method to predict banana pseudostem’s strength at seedling stage. Advances in Bioscience and Biotechnology, 9(9), 391–396. https://doi.org/10.4236/abb.2018.99027 DOI: https://doi.org/10.4236/abb.2018.99027

Dépigny, S., Achard, R., Lescot, T., Djomessi, M. T., Tchotang, F., Ngando, D. E., & Poix, C. (2015). In vivo assessment of the active foliar area of banana plants (Musa spp.) using the OTO model. Scientia Horticulturae, 181, 129–136. https://doi.org/10.1016/j.scienta.2014.10.044 DOI: https://doi.org/10.1016/j.scienta.2014.10.044

Gower, J. C., & Hand, D. J. (1995). Biplots. Monographs on statistics & applied probability. Chapman & Hall.

Jorquera-Fontena, E., Génard, M., Ribera-Fonseca, A., & Franck, N. (2017). A simple allometric model for estimating blueberry fruit weight from diameter measurements. Scientia Horticulturae, 219, 131–134. https://doi.org/10.1016/j.scienta.2017.03.009 DOI: https://doi.org/10.1016/j.scienta.2017.03.009

Karaca, C., Büyüktaş, D., & Şehir, S. (2020). Determination of leaf area of some vegetable plants grown under greenhouse condition by non-destructive methods. Horticultural Studies, 38(1), 23–28. https://doi.org/10.16882/hortis.841745 DOI: https://doi.org/10.16882/hortis.841745

Kumar, N., Krishnamoorthy, V., Nalina, L., & Soorianathasundharam, K. (2002). Nuevo factor para estimar el área foliar total en banano. Infomusa, 11(2), 42–43.

Laskar, S. Y., Weldesemayat Sileshi, G., Jyoti Nath, A., & Kumar Das, A. (2020). Allometric models for above and below-ground biomass of wild Musa stands in tropical semi evergreen forests. Global Ecology and Conservation, 24, Article e01208. https://doi.org/10.1016/j.gecco.2020.e01208 DOI: https://doi.org/10.1016/j.gecco.2020.e01208

Lassoudiere, A., (2007). Le bananier et sa culture. Quae, Collection Savoir-faire.

Martin Prevel, P. (1974). Les methodes d’echantillonnage pour l’analyse foliaire du bananier: resultats d’une enquete internationale et propositions en vue d’une reference commune. Fruits. In A. Lopez, & J. Espinosa, (Eds.), Manual on the nutrition and fertilization of banana (pp. 583–588). Potash and Phosphate Institute of Canada.

Martínez, A. M., & Cayón, D. G. (2011). Dinámica del crecimiento y desarrollo del banano (Musa AAA Simmonds cvs. Gran Enano y Valery). Revista Facultad Nacional de Agronomía Medellín, 64(2), 6055–6064.

Martínez, C., Cayón, G., & Ligarreto, G. (2015). Physiological attributes of banana and plantain cultivars of the Colombian Musaceae collection. Agronomía Colombiana, 33(1), 29–35. https://doi.org/10.15446/agron.colomb.v33n1.45935 DOI: https://doi.org/10.15446/agron.colomb.v33n1.45935

Martínez-Acosta, A. M., Jorquera-Fontena, E., Hernández-Arredondo J. D., & Franck, N. (2018). Sección transversal del pseudotallo como estimador del área foliar total en banano (Musa AAA). Un estudio preliminar. XXXII Reunión Argentina de Fisiología Vegetal y XVI Congreso Latinoamericano de Fisiología Vegetal (pp. 116).

Meier, W. (2001). Growth stages of mono and dicotyledonous plants. BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry. https://doi.org/10.5073/20180906-074619

Nowembabazi, A., Taulya G., & Tinzaara, W. (2021). Allometric functions for apple banana leaf area and above ground biomass. African Journal of Agricultural Research, 17(9), 1229–1236. https://doi.org/10.5897/AJAR2021.15478 DOI: https://doi.org/10.5897/AJAR2021.15478

Nyombi, K., van Asten, P. J. A., Leffelaar, P. A., Corbeels, M., Kaizzi, C. K., & Giller, K. E. (2009). Allometric growth relationships of East Africa highland bananas (Musa AAA-EAHB) cv. Kisansa and Mbwazirume. Annals of Applied Biology, 155(3), 403–418. https://doi.org/10.1111/j.1744-7348.2009.00353.x DOI: https://doi.org/10.1111/j.1744-7348.2009.00353.x

Oliveira, V. S., Santos K. T. H., Ambrósio, T. J., Santos, J. S. H., Santana W. R., Malikouski, R. G., Nascimento A. L., Santos G. P., Schmildt O., & Schmildt, E. R. (2019). Mathematical modeling for leaf area estimation from papaya seedlings ‘Golden THB’. Journal of Agricultural Science, 11(5), 496–505. https://doi.org/10.5539/jas.v11n5p496 DOI: https://doi.org/10.5539/jas.v11n5p496

Parker, G. (2020). Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 477, Article 118496. https://doi.org/10.1016/j.foreco.2020.118496 DOI: https://doi.org/10.1016/j.foreco.2020.118496

Santos, M. P., Maia V. M., Oliveira F. S., Pegoraro, R. F., Santos S. R., & Aspiazú, I. (2018). Estimation of total leaf area and D leaf area of pineapple from biometric characteristics. Revista Brasileira de Fruticultura, 40(6), Article e-556. https://doi.org/10.1590/0100-29452018556 DOI: https://doi.org/10.1590/0100-29452018556

Souto, A. G. L., Cordeiro, M. H. M., Rosado, L. D. S., Santos., C. E. M., & Bruckner, C. H. (2017). Non-destructive estimation of leaf area in passion fruit (Passiflora edulis L.). Australian Journal of Crop Science, 11(12), 1534–1538. https://doi.org/10.21475/AJCS.17.11.12.PNE662 DOI: https://doi.org/10.21475/ajcs.17.11.12.pne662

Stevens, B., Diels, J., Brown, A., Bayo, S., Ndakidemi, P. A., & Swennen, R. (2020). Banana biomass estimation and yield forecasting from non-destructive measurement for two contrasting cultivars and water regimes. Agronomy, 10(9), Article 1435. https://doi.org/10.3390/agronomy10091435 DOI: https://doi.org/10.3390/agronomy10091435

Turner, D. W., Fortescue, J. A., & Thomas, D. S. (2007). Environmental physiology of the bananas (Musa spp.). Brazilian Journal of Plant Physiology, 19(4), 463–484. https://doi.org/10.1590/S1677-04202007000400013 DOI: https://doi.org/10.1590/S1677-04202007000400013

How to Cite

APA

Martínez Acosta, A. M., Cayón-Salinas, D. G. and Darghan-Contreras, A. E. . (2022). Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA). Agronomía Colombiana, 40(3), 354–360. https://doi.org/10.15446/agron.colomb.v40n3.103234

ACM

[1]
Martínez Acosta, A.M., Cayón-Salinas, D.G. and Darghan-Contreras, A.E. 2022. Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA). Agronomía Colombiana. 40, 3 (Sep. 2022), 354–360. DOI:https://doi.org/10.15446/agron.colomb.v40n3.103234.

ACS

(1)
Martínez Acosta, A. M.; Cayón-Salinas, D. G.; Darghan-Contreras, A. E. . Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA). Agron. Colomb. 2022, 40, 354-360.

ABNT

MARTÍNEZ ACOSTA, A. M.; CAYÓN-SALINAS, D. G.; DARGHAN-CONTRERAS, A. E. . Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA). Agronomía Colombiana, [S. l.], v. 40, n. 3, p. 354–360, 2022. DOI: 10.15446/agron.colomb.v40n3.103234. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/103234. Acesso em: 25 jul. 2024.

Chicago

Martínez Acosta, Ana María, Daniel Gerardo Cayón-Salinas, and Aquiles Enrique Darghan-Contreras. 2022. “Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA)”. Agronomía Colombiana 40 (3):354-60. https://doi.org/10.15446/agron.colomb.v40n3.103234.

Harvard

Martínez Acosta, A. M., Cayón-Salinas, D. G. and Darghan-Contreras, A. E. . (2022) “Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA)”, Agronomía Colombiana, 40(3), pp. 354–360. doi: 10.15446/agron.colomb.v40n3.103234.

IEEE

[1]
A. M. Martínez Acosta, D. G. Cayón-Salinas, and A. E. . Darghan-Contreras, “Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA)”, Agron. Colomb., vol. 40, no. 3, pp. 354–360, Sep. 2022.

MLA

Martínez Acosta, A. M., D. G. Cayón-Salinas, and A. E. . Darghan-Contreras. “Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA)”. Agronomía Colombiana, vol. 40, no. 3, Sept. 2022, pp. 354-60, doi:10.15446/agron.colomb.v40n3.103234.

Turabian

Martínez Acosta, Ana María, Daniel Gerardo Cayón-Salinas, and Aquiles Enrique Darghan-Contreras. “Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA)”. Agronomía Colombiana 40, no. 3 (September 1, 2022): 354–360. Accessed July 25, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/103234.

Vancouver

1.
Martínez Acosta AM, Cayón-Salinas DG, Darghan-Contreras AE. Discriminant analysis for estimating meristematic differentiation point based on morphometric indicators in banana (Musa AAA). Agron. Colomb. [Internet]. 2022 Sep. 1 [cited 2024 Jul. 25];40(3):354-60. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/103234

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Nelino Florida Rofner, Cesar Augusto Gozme Sulca, Alex Rengifo Rojas. (2023). Modelling of alluvial soil quality and production in permanent banana Harton plantations. Soil and Water Research, 18(3), p.192. https://doi.org/10.17221/22/2023-SWR.

Dimensions

PlumX

Article abstract page views

246

Downloads

Download data is not yet available.