Published

2022-12-31

A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy

Modelo predictivo para la determinación de la concentración de cadmio en granos de cacao mediante espectroscopia de plasma inducido por láser

DOI:

https://doi.org/10.15446/agron.colomb.v40n3.104911

Keywords:

inorganic contaminants, heavy metals, partial least square regression, atomic spectroscopy (en)
contaminantes inorgánicos, metales pesados, regresión por mínimos cuadrados parciales, espectroscopía atómica (es)

Downloads

Authors

  • Sandra Liliana Herrera Celis Universidad Industrial de Santander - Centro de Materiales y Nanociencias - Laboratorio de Espectroscopia Atómica y Molecular (LEAM) - Parque Tecnológico Guatiguará - Piedecuesta, Santander - Colombia https://orcid.org/0000-0002-8004-7006
  • Jáder Enrique Guerrero Bermúdez Universidad Industrial de Santander - Grupo de Óptica y Tratamiento de Señales - Bucaramanga, Santander - Colombia https://orcid.org/0000-0002-5865-8118
  • Enrique Mejía-Ospino Universidad Industrial de Santander - Centro de Materiales y Nanociencias - Laboratorio de Espectroscopia Atómica y Molecular (LEAM) - Parque Tecnológico Guatiguará - Piedecuesta, Santander - Colombia https://orcid.org/0000-0001-9599-7891
  • Rafael Cabanzo Hernández Universidad Industrial de Santander - Centro de Materiales y Nanociencias - Laboratorio de Espectroscopia Atómica y Molecular (LEAM) - Parque Tecnológico Guatiguará - Piedecuesta, Santander - Colombia https://orcid.org/0000-0002-6907-2120

This study proposes a predictive model to determine the concentration of cadmium (Cd) in cocoa beans based on laser-induced breakdown spectroscopy (LIBS) and partial least squares regression (PLSR-1 or PLS-1). The multivariate calibration model was developed using 46 cocoa bean samples, with Cd concentrations up to 1 mg kg-1. The increase of the LIBS signal in the Cd emission lines was evident when the cocoa bean sample was subjected to a solid-liquid-solid transformation (SLST). The range error ratio (RER) was 7.92, which allowed it to be classified as a screening model. Monte Carlo cross-validation was used, with 60% of samples for calibration and the remaining for testing. The standard error of cross-validation (SECV) and standard error of calibration (SEC) were 0.12 mg kg-1 and 0.05 mg kg-1, respectively. The proposed procedure is framed within the alternatives for the chemical analysis of cocoa.

Este estudio propone un modelo para predecir la concentración de cadmio (Cd) en granos de cacao basado en espectroscopía de plasma inducido por láser (LIBS) y regresión por mínimos cuadrados parciales (PLSR-1 o PLS-1). El modelo de calibración fue desarrollado a partir de 46 muestras de granos de cacao con concentración no mayor a 1 mg kg-1. El incremento en la señal LIBS fue evidente cuando la muestra de grano de cacao fue sometida a una transformación sólido líquido-sólido (SLST). La razón del rango de error (RER) es 7.92, lo que permite determinar que el modelo es de tamizaje. Se utilizó la estrategia de validación cruzada Montecarlo con el 60% de las muestras para calibración y las restantes para prueba. El error estándar de validación cruzada (SECV) y de calibración (SEC) fue 0.12 mg kg-1 y 0.05 mg kg-1, respectivamente. El procedimiento propuesto se ubica en el marco de las alternativas de inspección y análisis químico del cacao.

References

Aguirre-Forero, S. E., Piraneque-Gambasica, N. V., & Vásquez-Polo, J. R. (2020). Heavy metals content in soils and cocoa tissues in Magdalena department Colombia: emphasis in cadmium. Entramado, 16(2), 298–310. https://doi.org/10.18041/1900-3803/entramado.2.6753 DOI: https://doi.org/10.18041/1900-3803/entramado.2.6753

Andrade-Garda, J. M. (2009). Basic chemometric techniques in atomic spectroscopy. RSC. DOI: https://doi.org/10.1039/9781847559661

Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292 DOI: https://doi.org/10.1016/j.scitotenv.2018.08.292

ASTM E1655-05. (2012). Standard practices for infrared multivariate quantitative analysis. ASTM International. https://doi.org/10.1520/E1655-17 DOI: https://doi.org/10.1520/E1655-17

Bertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46–53. https://doi.org/10.1016/j.foodcont.2016.01.013 DOI: https://doi.org/10.1016/j.foodcont.2016.01.013

Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Gutierrez Rodríguez, E. A. (2021). The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4), Article 761. https://doi.org/10.3390/agronomy11040761 DOI: https://doi.org/10.3390/agronomy11040761

Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106 DOI: https://doi.org/10.1016/j.scitotenv.2015.06.106

Checa, K., Gamarra, M., Soto, J., Ipanaqué, W., & La Rosa, G. (2019). Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans. Proceedings of the Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 1–7. https://doi.org/10.1109/CHILECON47746.2019.8987991 DOI: https://doi.org/10.1109/CHILECON47746.2019.8987991

De Jong, S. (1993). SIMPLS: An alternative approach to partial least-squares regression. Chemometric and Intelligent Laboratory Systems, 18(3), 251–263. https://doi.org/10.1016/0169-7439(93)85002-X DOI: https://doi.org/10.1016/0169-7439(93)85002-X

Escobar, S., Santander, M., Useche, P., Contreras, C., & Rodríguez, J. (2020). Aligning strategic objectives with research and development activities in a soft commodity sector: A technological plan for Colombian cocoa producers. Agriculture, 10(5), Article 141. https://doi.org/10.3390/agriculture10050141 DOI: https://doi.org/10.3390/agriculture10050141

Escobar, S., Santander, M., Zuluaga, M., Chacón, I., Rodríguez, J., & Vaillant, F. (2021). Fine cocoa beans production: Tracking aroma precursors through a comprehensive analysis of flavor attributes formation. Food Chemistry, 365,. Article 130627. https://doi.org/10.1016/j.foodchem.2021.130627 DOI: https://doi.org/10.1016/j.foodchem.2021.130627

Faber, N. M., & Ferré, F. J. (2008). On the numerical stability of two widely used PLS algorithms. Journal of Chemometrics, 22(2), 101–105. https://doi.org/10.1002/cem.1112 DOI: https://doi.org/10.1002/cem.1112

Fedecacao. (2021). Año cacaotero 2020-2021, el de mayor producción de cacao en la historia de Colombia. News. https://www.fedecacao.com.co/post/año-cacaotero-2020-2021-el-de-mayorproducción-de-cacao-en-la-historia-de-colombia

Filgueiras, P. R., Alves, J. C. L., Sad, C. M. S., Castro, E. V. R., Dias, J. C. M., & Poppi, R. J. (2014). Evaluation of trends in residuals of multivariate calibration models by permutation test. Chemometrics and Intelligent Laboratory Systems, 133, 33–41. https://doi.org/10.1016/j.chemolab.2014.02.002 DOI: https://doi.org/10.1016/j.chemolab.2014.02.002

Gramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2017). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment, 580, 677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014 DOI: https://doi.org/10.1016/j.scitotenv.2016.12.014

Järup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208. https://doi.org/10.1016/j.taap.2009.04.020 DOI: https://doi.org/10.1016/j.taap.2009.04.020

Jorhem, L., & Engman, J. (2000). Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL1 collaborative study. Journal of AOAC International, 83(5), 1189–1203. DOI: https://doi.org/10.1093/jaoac/83.5.1189

Menegatti, C. R., Nicolodelli, G., Senesi, G. S., da Silva, O. A., Filho,H. J. I., Villas-Boas, P. R., Marangoni, B. S., & Milori, D. M. B. P. (2019). Evaluation of LIBS under controlled atmosphere to quantify cadmium at low concentration in landfill leachates. Applied Physics B, 125, Article 74. https://doi.org/10.1007/s00340-019-7189-9 DOI: https://doi.org/10.1007/s00340-019-7189-9

Nicolodelli, G., Cabral, J., Menegatti, C. R., Marangoni, B., & Senesi, G. S. (2019). Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part I. Soils and fertilizers. TrAC - Trends in Analytical Chemistry, 115, 70–82. https://doi.org/10.1016/j.trac.2019.03.032 DOI: https://doi.org/10.1016/j.trac.2019.03.032

Niño, A. R., Ramírez, C. X., Hernández, R. C., Picón, H., Guerrero, J. E., & Mejía-Ospino, E. (2019). FTIR-ATR predictive model for determination of asphaltene solubility class index (ASCI) based on partial least-squares regression (PLS-R). Energy and Fuels, 33(12), 12213–12218. https://doi.org/10.1021/acs.energyfuels.9b02829 DOI: https://doi.org/10.1021/acs.energyfuels.9b02829

Oliveira, A. P. F., Milani, R. F., Efraim, P., Morgano, M. A., & Tfouni, S. A. V. (2021). Cd and Pb in cocoa beans: Occurrence and effects of chocolate processing. Food Control, 119, Article 107455. https://doi.org/10.1016/j.foodcont.2020.107455 DOI: https://doi.org/10.1016/j.foodcont.2020.107455

Otto, M. (2007). Chemometrics: Statistics and computer application in analytical chemistry (2nd ed.). Weinheim, Wiley-VCH.

Rodríguez Albarracín, H. S., Darghan Contreras, A. E., & Henao, M. C. (2019). Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional, 16, Article e00214. https://doi.org/10.1016/j.geodrs.2019.e00214 DOI: https://doi.org/10.1016/j.geodrs.2019.e00214

Rodríguez Giraldo, Y., Rodríguez Sánchez, S., Torres, L. G., Montenegro, A. C., & Pichimata, M. A. (2022). Development of validation methods to determine cadmium in cocoa almond from the beans by ICP-MS and ICP-OES. Talanta Open, 5, Article 100078. https://doi.org/10.1016/j.talo.2021.100078 DOI: https://doi.org/10.1016/j.talo.2021.100078

Satarug, S. (2018). Dietary cadmium intake and its effects on kidneys. Toxics, 6(1), Article 15. https://doi.org/10.3390/toxics6010015 DOI: https://doi.org/10.3390/toxics6010015

Senesi, G. S., Cabral, J., Menegatti, C. R., Marangoni, B., & Nicolodelli, G. (2019). Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part II. Crop plants and their food derivatives. TrAC - Trends in Analytical Chemistry, 118, 453–469. https://doi.org/10.1016/j.trac.2019.05.052 DOI: https://doi.org/10.1016/j.trac.2019.05.052

Sezer, B., Bilge, G., & Boyaci, I. H. (2017). Capabilities and limitations of LIBS in food analysis. TrAC - Trends in Analytical Chemistry, 97, 345–353. https://doi.org/10.1016/j.trac.2017.10.003 DOI: https://doi.org/10.1016/j.trac.2017.10.003

Shen, T., Kong, W., Liu, F., Chen, Z., Yao, J., Wang, W., Peng, J., Chen, H., & He, Y. (2018). Rapid determination of cadmium contamination in lettuce using laser-induced breakdown spectroscopy. Molecules, 23(11), Article 2930. https://doi.org/10.3390/molecules23112930 DOI: https://doi.org/10.3390/molecules23112930

Vanderschueren, R., De Mesmaeker, V., Mounicou, S., Isaure, M. P., Doelsch, E., Montalvo, D., Delcour, J. A., Chavez, E., & Smolders, E. (2020). The impact of fermentation on the distribution of cadmium in cacao beans. Food Research International, 127, Article 108743. https://doi.org/10.1016/j.foodres.2019.108743 DOI: https://doi.org/10.1016/j.foodres.2019.108743

Wang, W., Kong, W., Shen, T., Man, Z., Zhu, W., He, Y., & Liu, F. (2021). Quantitative analysis of cadmium in rice roots based on LIBS and chemometrics methods. Environmental Sciences Europe, 33(1), Article 37. https://doi.org/10.1186/s12302-021-00480-4 DOI: https://doi.org/10.1186/s12302-021-00480-4

Xu, Q. S., & Liang, Y. Z. (2001). Monte Carlo cross validation. Chemometrics and Intelligent Laboratory Systems, 56(1), 1–11. https://doi.org/10.1016/S0169-7439(00)00122-2 DOI: https://doi.org/10.1016/S0169-7439(00)00122-2

Yang, P., Zhou, R., Zhang, W., Yi, R., Tang, S., Guo, L., Hao, Z., Li, X., Lu, Y., & Zeng, X. (2019). High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chemistry, 272, 323–328. https://doi.org/10.1016/j.foodchem.2018.07.214 DOI: https://doi.org/10.1016/j.foodchem.2018.07.214

Yang, P., Zhu, Y., Yang, X., Li, J., Tang, S., Hao, Z., Guo, L., Li, X., Zeng, X., & Lu, Y. (2018). Evaluation of sample preparation methods for rice geographic origin classification using laserinduced breakdown spectroscopy. Journal of Cereal Science, 80, 111–118. https://doi.org/10.1016/j.jcs.2018.01.007 DOI: https://doi.org/10.1016/j.jcs.2018.01.007

Yao, M., Yang, H., Huang, L., Chen, T., Rao, G., & Liu, M. (2017). Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy. Applied Optics, 56(14), 4070–4075. https://doi.org/10.1364/ao.56.004070 DOI: https://doi.org/10.1364/AO.56.004070

Zhao, X., Zhao, C., Du, X., & Dong, D. (2019). Detecting and mapping harmful chemicals in fruit and vegetables using nanoparticle-enhanced laser-induced breakdown spectroscopy. Scientific Reports, 9(1), Article 906. https://doi.org/10.1038/s41598-018-37556-w DOI: https://doi.org/10.1038/s41598-018-37556-w

How to Cite

APA

Herrera Celis, S. L., Guerrero Bermúdez, J. E., Mejía-Ospino, E. and Cabanzo Hernández, R. (2022). A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy. Agronomía Colombiana, 40(3), 429–439. https://doi.org/10.15446/agron.colomb.v40n3.104911

ACM

[1]
Herrera Celis, S.L., Guerrero Bermúdez, J.E., Mejía-Ospino, E. and Cabanzo Hernández, R. 2022. A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy. Agronomía Colombiana. 40, 3 (Sep. 2022), 429–439. DOI:https://doi.org/10.15446/agron.colomb.v40n3.104911.

ACS

(1)
Herrera Celis, S. L.; Guerrero Bermúdez, J. E.; Mejía-Ospino, E.; Cabanzo Hernández, R. A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy. Agron. Colomb. 2022, 40, 429-439.

ABNT

HERRERA CELIS, S. L.; GUERRERO BERMÚDEZ, J. E.; MEJÍA-OSPINO, E.; CABANZO HERNÁNDEZ, R. A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy. Agronomía Colombiana, [S. l.], v. 40, n. 3, p. 429–439, 2022. DOI: 10.15446/agron.colomb.v40n3.104911. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/104911. Acesso em: 25 jul. 2024.

Chicago

Herrera Celis, Sandra Liliana, Jáder Enrique Guerrero Bermúdez, Enrique Mejía-Ospino, and Rafael Cabanzo Hernández. 2022. “A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy”. Agronomía Colombiana 40 (3):429-39. https://doi.org/10.15446/agron.colomb.v40n3.104911.

Harvard

Herrera Celis, S. L., Guerrero Bermúdez, J. E., Mejía-Ospino, E. and Cabanzo Hernández, R. (2022) “A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy”, Agronomía Colombiana, 40(3), pp. 429–439. doi: 10.15446/agron.colomb.v40n3.104911.

IEEE

[1]
S. L. Herrera Celis, J. E. Guerrero Bermúdez, E. Mejía-Ospino, and R. Cabanzo Hernández, “A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy”, Agron. Colomb., vol. 40, no. 3, pp. 429–439, Sep. 2022.

MLA

Herrera Celis, S. L., J. E. Guerrero Bermúdez, E. Mejía-Ospino, and R. Cabanzo Hernández. “A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy”. Agronomía Colombiana, vol. 40, no. 3, Sept. 2022, pp. 429-3, doi:10.15446/agron.colomb.v40n3.104911.

Turabian

Herrera Celis, Sandra Liliana, Jáder Enrique Guerrero Bermúdez, Enrique Mejía-Ospino, and Rafael Cabanzo Hernández. “A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy”. Agronomía Colombiana 40, no. 3 (September 1, 2022): 429–439. Accessed July 25, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/104911.

Vancouver

1.
Herrera Celis SL, Guerrero Bermúdez JE, Mejía-Ospino E, Cabanzo Hernández R. A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy. Agron. Colomb. [Internet]. 2022 Sep. 1 [cited 2024 Jul. 25];40(3):429-3. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/104911

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

292

Downloads

Download data is not yet available.