Published

2022-12-31

Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery

Modelos de predicción de área foliar a partir de mediciones de crecimiento en agraz (Vaccinium meridionale Swartz) en vivero

DOI:

https://doi.org/10.15446/agron.colomb.v40n3.105039

Keywords:

average leaf area, regression analysis, weighted least squares, Andean species, Ericaceae (en)
área foliar promedio, análisis de regresión, mínimos cuadrados ponderados, especies andinas, Ericaceae (es)

Downloads

Authors

The Andean blueberry is a high-Andean wild fruit species consumed in fresh or processed form that has high potential due to its antioxidant capacity. Leaf area describes the photosynthetic capacity of plants and is employed as a variable in multiple physiological studies; however, in Andean blueberry (Vaccinium meridionale Swartz), its direct measurement is costly. The aim of this research was to propose models for estimating the leaf area in young Andean blueberry plants using morphometric variables. In the study, 436 Andean blueberry plants of different ages (10 to 26 months) obtained with different methods of asexual propagation (tissue culture or cuttings) were used. Variables, such as dry weight per organ, leaf area, plant height, number of vegetative shoots and number of leaves, were measured. Simple and multiple regressions were performed and the “weighted least squares” technique was used to meet the regression assumptions. Five models with coefficients of determination (R2) greater than 0.81 were proposed. Two models were of the multiple type and employed the number of leaves together with the dry weight of leaves or the total dry weight as predictor variables. The other models were linear and used total dry weight, dry weight of leaves or number of leaves as explanatory variables of leaf area; the number of leaves was a particularly interesting variable due to its non-destructive nature. The models presented could be a useful tool for estimating leaf area in future studies in Andean blueberry.

El agraz es un frutal silvestre altoandino de consumo en fresco o procesado que presenta alto potencial debido a su capacidad antioxidante. El área foliar describe la capacidad fotosintética de las plantas y se emplea como variable en múltiples estudios fisiológicos; no obstante, en agraz (Vaccinium meridionale Swartz) su medición directa resulta dispendiosa. El objetivo de esta investigación fue plantear modelos para estimar el área foliar en plantas jóvenes de agraz, empleando variables de tipo morfométrico. Se utilizaron 436 plantas de agraz de diferentes edades (entre 10 y 26 meses) obtenidas a partir de propagación asexual (estacas o cultivo de tejidos). Se midieron variables como peso seco por órgano, área foliar, altura de la planta, número de brotes vegetativos y número de hojas. Se realizaron regresiones simples y múltiples y se utilizó la técnica de “mínimos cuadrados ponderados” para cumplir con los supuestos de la regresión. Se plantearon cinco modelos con coeficientes de determinación (R2) superiores a 0.81. Dos modelos fueron de tipo múltiple y emplearon el número de hojas junto con el peso seco de hojas o el peso seco total como variables predictoras. Los otros tres modelos fueron de tipo lineal y utilizaron el peso seco total, el peso seco de hojas o número de hojas como variables explicativas del área foliar, siendo el número de hojas particularmente interesante por su carácter no destructivo. Los modelos presentados pueden ser una herramienta útil para estimar el área foliar en futuras investigaciones en agraz.

References

Adobe Systems Incorporated. (1990). Adobe Photoshop. Microsoft Windows.

Autodesk. (1982). AutoCAD. Microsoft Windows.

Akram-Ghaderi, F., & Soltani, A. (2007). Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate sub-humid environment. International Journal of Plant Production, 1(1), 63–71.

Barai, K., Calderwood, L., Wallhead, M., Vanhanen, H., Hall, B., Drummond, F., & Zhang, Y. J. (2022). High variation in yield among wild blueberry genotypes: Can yield be predicted by leaf and stem functional traits? Agronomy, 12(3), Article 617. https://doi.org/10.3390/agronomy12030617 DOI: https://doi.org/10.3390/agronomy12030617

Becerra, A. D., Quevedo-Rubiano, S., Magnitskiy, S., & Lancheros, H. O. (2022). Morphological responses of Andean blueberry (Vaccinium meridionale Swartz) plants growing in three environments at different altitudes. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15034.

Benedetto, D., & Togmetti, J. (2016). Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. Revista de Investigaciones Agropecuarias, 42(3), 258–282.

Bernal, L. J., Melo, L. A., & Díaz Moreno, C. (2014). Evaluation of the antioxidant properties and aromatic profile during maturation of the blackberry (Rubus glaucus Benth) and the bilberry (Vaccinium meridionale Swartz). Revista Facultad Nacional de Agronomía Medellín, 67(1), 7209–7218. https://doi.org/10.15446/rfnam.v67n1.42649 DOI: https://doi.org/10.15446/rfnam.v67n1.42649

Borda-Yepes, V. H., Chejne, F., Daza-Olivella, L., Alzate-Arbelaez, A. F., Rojano, B. A., & Raghavan, V. G. S. (2018). Effect of microwave and infrared drying over polyphenol content in Vaccinium meridionale (Swartz) dry leaves. Journal of Food Process Engineering, 42(1), Article e12939. https://doi.org/10.1111/jfpe.12939 DOI: https://doi.org/10.1111/jfpe.12939

Brito, E., Romero, E. R., Casen, S. D., Alonso, L. G., & Digonzelli, P. A. (2007). Métodos no destructivos de estimación del área foliar por tallo en la variedad LCP 85-384 de caña de azúcar. Revista Industrial y Agrícola de Tucumán, 84(2), 29–32.

Bryla, D. R., & Machado, R. M. A. (2011). Comparative effects of nitrogen fertigation and granular fertilizer application on growth and availability of soil nitrogen during establishment of highbush blueberry. Frontiers in Plant Science, 2, Article 46. https://doi.org/10.3389/fpls.2011.00046 DOI: https://doi.org/10.3389/fpls.2011.00046

Bryla, D. R., & Strik, B. C. (2015). Nutrient requirements, leaf tissue standards, and new options for fertigation of northern highbush blueberry. HortTechnology, 25(4), 464–470. https://doi.org/10.21273/horttech.25.4.464 DOI: https://doi.org/10.21273/HORTTECH.25.4.464

Cabezas-Gutiérrez, M., & Peña-Baracaldo, F. (2012). Estimación del área foliar del arándano (Vaccinium corymbosum) por medio de un método no destructivo. Revista U.D.C.A Actualidad & Divulgación Científica, 15(2), 373–379. https://doi.org/10.31910/rudca.v15.n2.2012.837 DOI: https://doi.org/10.31910/rudca.v15.n2.2012.837

Cabezas-Gutiérrez, M., Peña, F., Duarte, H. W., Colorado, J. F., & Lora Silva, R. (2009). Un modelo para la estimación del área foliar en tres especies forestales de forma no destructiva. Revista U.D.C.A Actualidad & Divulgación Científica, 12(1), 121–130.https://doi.org/10.31910/rudca.v12.n1.2009.648 DOI: https://doi.org/10.31910/rudca.v12.n1.2009.648

Calvo-Alvarado, J. C., McDowell, N. G., & Waring, R. H. (2008). Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species. Tree Physiology, 28(11), 1601–1608. https://doi.org/10.1093/treephys/28.11.1601 DOI: https://doi.org/10.1093/treephys/28.11.1601

Celik, H., Serhat-Odabas, M., & Odabas, F. (2011). Leaf area prediction models for highbush blueberries (Vaccinium corymbosum L.) from linear measurement. Journal of Microbiology, Biotechnology and Food Sciences, 33(1), 16–21.

Cittadini, E. D., & Peri, P. L. (2006). Estimation of leaf area in sweet cherry using a non-destructive method. Revista de Investigaciones Agropecuarias, 35(1), 143–150.

Cosmulescu, S., Scrieciu, F., & Manda, M. (2020). Determination of leaf characteristics in different medlar genotypes using the ImageJ program. Horticultural Science, 47(2), 117–121. https://doi.org/10.17221/97/2019-HORTSCI DOI: https://doi.org/10.17221/97/2019-HORTSCI

Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), Article 1400033. https://doi.org/10.3732/apps.1400033 DOI: https://doi.org/10.3732/apps.1400033

Ehlenfeldt, M. K., Polashock, J. J., Rowland, L. J., Ogden, E., & Luteyn, J. L. (2022). Fertile intersectional hybrids of 4x Andean blueberry (Vaccinium meridionale) and 2x lingonberry (V. vitis-idaea). HortScience, 57(4), 525–531. https://doi.org/10.21273/hortsci16285-21 DOI: https://doi.org/10.21273/HORTSCI16285-21

Fallovo, C., Cristofori, V., De-Gyves, E. M., Rivera, C. M., Rea, R., Fanasca, S., Bignami, C., Sassine, Y., & Rouphael, Y. (2008). Leaf area estimation model for small fruits from linear measurements. HortScience, 43(7), 2263–2267. https://doi.org/10.21273/hortsci.43.7.2263 DOI: https://doi.org/10.21273/HORTSCI.43.7.2263

Fanourakis, D., Briese, C., Max, J. F. J., Kleinen, S., Putz, A., Fiorani, F., Ulbrich, A., & Schurr, U. (2014). Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture. Plant Methods, 10(1), 1–11. https://doi.org/10.1186/1746-4811-10-9 DOI: https://doi.org/10.1186/1746-4811-10-9

Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Sage, Thousand Oaks CA. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

Garzón, G. A., Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R., & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale Swartz pomace. Heliyon, 6(5), Article e03845. https://doi.org/10.1016/j.heliyon.2020.e03845 DOI: https://doi.org/10.1016/j.heliyon.2020.e03845

González, L. K., Rugeles, L. N., & Magnitskiy, S. (2018). Effect of different sources of nitrogen on the vegetative growth of Andean blueberry (Vaccinium meridionale Swartz). Agronomía Colombiana, 36(1), 58–67. https://doi.org/10.15446/agron.colomb.v36n1.69304 DOI: https://doi.org/10.15446/agron.colomb.v36n1.69304

Huang, W., Ratkowsky, D. A., Hui, C., Wang, P., Su, J., & Shi, P. (2019). Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests, 10(3), Article 256. https://doi.org/10.3390/f10030256 DOI: https://doi.org/10.3390/f10030256

Hunt, R. (2017). Growth analysis, Individual plants. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.). Encyclopedia of applied plant sciences (2nd ed., Vol. 1, pp. 421–429). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-394807-6.00226-4

Igathinathane, C., Prakash, V. S. S., Padma, U., Babu, G. R., & Womac, A. R. (2006). Interactive computer software development for leaf area measurement. Computers and Electronics in Agriculture, 51(1–2), 1–16. https://doi.org/10.1016/j.compag.2005.10.003 DOI: https://doi.org/10.1016/j.compag.2005.10.003

Jeliazkova, E. A., & Percival, D. C. (2003). N and P fertilizers, some growth variables, and mycorrhizae in wild blueberry (Vaccinium angustifolium). Acta Horticulturae, 626, 297–304. https://doi.org/10.17660/actahortic.2003.626.41 DOI: https://doi.org/10.17660/ActaHortic.2003.626.41

Kassambara, A. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. R package versión 1.0.7. https://CRAN.R-project.org/package=factoextra

Kucharik, C. J., Norman, J. M., & Gower, S. T. (1998). Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology, 91(1–2), 69–88. https://doi.org/10.1016/S0168-1923(98)00064-1 DOI: https://doi.org/10.1016/S0168-1923(98)00064-1

Lancheros, H. (2012). Caracterización de las micorrizas nativas en agraz Vaccinium meridionale Swartz y evaluación de su efecto sobre el crecimiento plantular [MSc Thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/12135

León-Burgos, A. F., Ramírez, C., Rendón Sáenz, J. R., Imbachi-Quinchua, L. C., Unigarro-Muñoz, C. A., & Balaguera-López, H. E. (2022). Fitting growth curves of coffee plants in the nursery stage of growth: A functional approach. Agronomia Colombiana, 40(3), 323–332.

Litwinczuk, W., Srzegorz, G., & Wrona, D. (2005). Field performanceof highbush blueberries (Vaccinium x corymbosum L.) cv. “Herbert” propagated by cuttings and tissue culture. Scientia Horticulturae, 106, 162–169. https://doi.org/10.1016/j.scienta.2005.02.025 DOI: https://doi.org/10.1016/j.scienta.2005.02.025

Lopes, C., & Pinto, P. A. (2005). Easy and accurate estimation of grapevine leaf area with simple mathematical models. Vitis - Journal of Grapevine Research, 44(2), 55–61.

Maldonado Celis, M. E., Franco Tobón, Y. N., Agudelo, C., Arango, S. S., & Rojano, B. (2017). Andean berry (Vaccinium meridionale Swartz). In E. M. Yahia (Ed.), Fruit and vegetable phytochemicals: Chemistry and human health (2nd ed., pp. 869–881). https://doi.org/10.1002/9781119158042.ch40 DOI: https://doi.org/10.1002/9781119158042.ch40

Marino, S. R., Williamson, J. G., & Olmstead, J. W. (2014). Vegetative growth of three southern highbush blueberry cultivars obtained from micropropagation and softwood cuttings in two Florida locations. HortScience, 49(5), 556–561. https://doi.org/10.21273/hortsci.49.5.556 DOI: https://doi.org/10.21273/HORTSCI.49.5.556

Maqbool, R., Percival, D., Zaman, Q., Astatkie, T., Adl, S., & Buszard, D. (2017). Leaf nutrients ranges and berry yield optimization in response to soil-applied nitrogen, phosphorus and potassium in wild blueberry (Vaccinium angustifolium Ait.). European Journal of Horticultural Science, 82(4), 166–179. https://doi.org/10.17660/eJHS.2017/82.4.2 DOI: https://doi.org/10.17660/eJHS.2017/82.4.2

Medina Cano, C. I., Lobo Arias, M., Castaño Colorado, Á. A., & Cardona, L. E. (2015). Análisis del desarrollo de plantas de mortiño (Vaccinium meridionale Swartz.) bajo dos sistemas de propagación: clonal y sexual. Ciencia & Tecnología Agropecuaria, 16(1), Article 390. https://doi.org/10.21930/rcta.vol16_num1_art:390 DOI: https://doi.org/10.21930/rcta.vol16_num1_art:390

Medina Cano, C. I., Martínez Bustamante, E., & López Orozco, C. A. (2019). Phenological scale for the mortiño or agraz (Vaccinium meridionale Swartz) in the high Colombian Andean area. Revista Facultad Nacional de Agronomia Medellin, 72(3), 8897–8908. https://doi.org/10.15446/rfnam.v72n3.74460 DOI: https://doi.org/10.15446/rfnam.v72n3.74460

Milić, B., Tarlanović, J., Keserović, Z., Magazin, N., Miodragović, M., & Popara, G. (2018). Bioregulators can improve fruit size, yield and plant growth of northern highbush blueberry (Vaccinium corymbosum L.). Scientia Horticulturae, 235, 214–220. https://doi.org/10.1016/j.scienta.2018.03.004 DOI: https://doi.org/10.1016/j.scienta.2018.03.004

Montoya Restrepo, E. C., Hernández Arredondo, J. D., Unigarro Muñoz, C. A., & Flórez Ramos, C. P. (2017). Estimación del área foliar en café variedad Castillo® a libre exposición y su relación con la producción. Cenicafé, 68(1), 55–61. DOI: https://doi.org/10.38141/10778/68105

Mukaka, M. (2012). Statistics corner: A guide to appropriate correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71.

Muñoz, J. D., Martínez, L. J., & Ligarreto, G. A. (2009). Caracterización de los ambientes agroecológicos del agraz o mortiño (Vaccinium meridionale Swartz), en la zona altoadina de Colombia. In G. A. Ligarreto (Ed.), Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia (pp. 29–56). Universidad Nacional de Colombia. Facultad de Agronomía.

NeSmith, D. S. (1991). Nondestructive leaf area estimation of rabbiteye blueberries. HortScience, 26(10), Article 1332. https://doi.org/10.21273/hortsci.26.10.1332 DOI: https://doi.org/10.21273/HORTSCI.26.10.1332

Nestby, R., Martinussen, I., Krogstad, T., & Uleberg, E. (2014). Effect of fertilization, tiller cutting and environment on plant growth and yield of European blueberry (Vaccinium myrtillus L.) in Norwegian forest fields. Journal of Berry Research, 4(2), 79–95. https://doi.org/10.3233/JBR-140070 DOI: https://doi.org/10.3233/JBR-140070

Panigrahi, N., & Sankar Das, B. (2020). Evaluation of regression algorithms for estimating leaf area index and canopy water content from water stressed rice canopy reflectance. Information Processing in Agriculture, 8(2), 284–298. https://doi.org/10.1016/j.inpa.2020.06.002 DOI: https://doi.org/10.1016/j.inpa.2020.06.002

PennState Eberly College of Science. (2021, January 20). Lesson 13: Weighted Least Squares & Robust Regression. https://online.stat.psu.edu/stat501/lesson/13

Percival, D. C., & Privé, J. P. (2002). Nitrogen formulation influences plant nutrition and yield components of lowbush blueberry (Vaccinium angustifolium Ait.). Acta Horticulturae, 574, 347–353. https://doi.org/10.17660/actahortic.2002.574.52 DOI: https://doi.org/10.17660/ActaHortic.2002.574.52

Percival, D. C., Janes, D. E., Stevens, D. E., & Sanderson, K. (2003). Impact of multiple fertilizer applications on plant growth, development, and yield of wild lowbush blueberry (Vaccinium angustifolium Aiton). Acta Horticulturae, 626, 423–429. https://doi.org/10.17660/actahortic.2003.626.57 DOI: https://doi.org/10.17660/ActaHortic.2003.626.57

Pire, R., & Valenzuela, I. (1995). Estimación del área foliar en Vitis vinifera L. “French Colombard” a partir de mediciones lineales en hojas. Agronomía Tropical, 45(1), 143–154.

Sánchez-Aguilar, H., Aldrete, A., Vargas-Hernández, J., & Ordaz-Chaparro, V. (2016). Influencia del tipo y color de envase en el desarrollo de plantas de pino en vivero. Agrociencia, 50(4), 481–492.

Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., Toomet, O., Crowley, J., Hofmann, H., & Wickham, H. (2021, June 21). GGally: Extension to ‘ggplot2’. Version 2.1.2. https://CRAN.R-project.org/package=GGally

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089

Signorell, A. (2018). DescTools: Tools for descriptive statistics. R package version 0 .99. 24. https://cran.r-project.org/web/packages/DescTools/index.html

Singh, R. R., Meena, L. K., & Singh, P. (2017). High tech nursery management in horticultural crops: A way for enhancing income. International Journal of Current Microbiology and Applied Sciences, 6(6), 3162–3172. https://doi.org/10.20546/ijcmas.2017.606.372 DOI: https://doi.org/10.20546/ijcmas.2017.606.372

Shi, P., Ratkowsky, D. A., Li, Y., Zhang, L., Lin, S., & Gielis, J. (2018). A general leaf area geometric formula exists for plants - Evidence from the simplified Gielis equation. Forests, 9(11), Article 714. https://doi.org/10.3390/f9110714 DOI: https://doi.org/10.3390/f9110714

Spann, T. M., & Heerema, R. J. (2010). A simple method for nondestructive estimation of total shoot leaf area in tree fruit crops. Scientia Horticulturae, 125(3), 528–533. https://doi.org/10.1016/j.scienta.2010.04.033 DOI: https://doi.org/10.1016/j.scienta.2010.04.033

Suárez Salazar, J. C., Melgarejo, L. M., Duran Bautista, E. H., Di Rienzo, J. A., & Casanoves, F. (2018). Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae, 229, 19–24. https://doi.org/10.1016/j.scienta.2017.10.034 DOI: https://doi.org/10.1016/j.scienta.2017.10.034

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2018). Fundamentals of plant physiology. Oxford University Press.

Taugourdeau, S., le Maire, G., Avelino, J., Jones, J. R., Ramirez, L. G., Jara Quesada, M., Charbonnier, F., Gómez-Delgado, F., Harmand, J. M., Rapidel, B., Vaast, P., & Roupsard, O. (2014). Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry. Agriculture, Ecosystems and Environment, 192, 19–37. https://doi.org/10.1016/j.agee.2014.03.042 DOI: https://doi.org/10.1016/j.agee.2014.03.042

Torres, W. S., Montoya, I. A., & Ligarreto, G. A. (2009). Aspectos sociales y económicos de la producción de agraz o mortiño (Vaccinium meridionale Swartz). In G. A. Ligarreto, Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia (pp. 113–134).

Torres, W. S., Rubio, E. W., & G. A. Ligarreto. (2012). Agraz o mortiño (Vaccinium meridionale Swartz). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 905–914). Produmedios.

Wakui, A., & Kudo, G. (2021). Ecotypic differentiation of a circumpolar Arctic-alpine species at mid-latitudes: Variations in the ploidy level and reproductive system of Vaccinium vitis-idaea. AoB PLANTS, 13(3), Article plab015. https://doi.org/10.1093/aobpla/plab015 DOI: https://doi.org/10.1093/aobpla/plab015

Weraduwage, S. M., Chen, J., Anozie, F. C., Morales, A., Weise, S. E., & Sharkey, T. D. (2015). The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science, 6, Article 167. https://doi.org/10.3389/fpls.2015.00167 DOI: https://doi.org/10.3389/fpls.2015.00167

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org DOI: https://doi.org/10.1007/978-3-319-24277-4

Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., & Zhang, W. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives.Agricultural and Forest Meteorology, 265, 390–411. https://doi.org/10.1016/j.agrformet.2018.11.033 DOI: https://doi.org/10.1016/j.agrformet.2018.11.033

Zapata-Vahos, I. C., Villacorta, V., Maldonado, M. E., Castro-Restrepo, D., & Rojano, B. (2015). Antioxidant and cytotoxic activity of black and green tea from Vaccinium meridionale Swartz leaves. Journal of Medicinal Plants Research, 9(13), 445–453. https://doi.org/10.5897/JMPR2014.5744 DOI: https://doi.org/10.5897/JMPR2014.5744

How to Cite

APA

Vásquez-Martínez, M., Lizarazo-Peña, P., Darghan, E., Moreno-Fonseca, L. P. and Magnitskiy, S. (2022). Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery. Agronomía Colombiana, 40(3), 361–371. https://doi.org/10.15446/agron.colomb.v40n3.105039

ACM

[1]
Vásquez-Martínez, M., Lizarazo-Peña, P., Darghan, E., Moreno-Fonseca, L.P. and Magnitskiy, S. 2022. Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery. Agronomía Colombiana. 40, 3 (Sep. 2022), 361–371. DOI:https://doi.org/10.15446/agron.colomb.v40n3.105039.

ACS

(1)
Vásquez-Martínez, M.; Lizarazo-Peña, P.; Darghan, E.; Moreno-Fonseca, L. P.; Magnitskiy, S. Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery. Agron. Colomb. 2022, 40, 361-371.

ABNT

VÁSQUEZ-MARTÍNEZ, M.; LIZARAZO-PEÑA, P.; DARGHAN, E.; MORENO-FONSECA, L. P.; MAGNITSKIY, S. Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery. Agronomía Colombiana, [S. l.], v. 40, n. 3, p. 361–371, 2022. DOI: 10.15446/agron.colomb.v40n3.105039. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/105039. Acesso em: 6 oct. 2024.

Chicago

Vásquez-Martínez, Mariam, Pedro Lizarazo-Peña, Enrique Darghan, Liz Patricia Moreno-Fonseca, and Stanislav Magnitskiy. 2022. “Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery”. Agronomía Colombiana 40 (3):361-71. https://doi.org/10.15446/agron.colomb.v40n3.105039.

Harvard

Vásquez-Martínez, M., Lizarazo-Peña, P., Darghan, E., Moreno-Fonseca, L. P. and Magnitskiy, S. (2022) “Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery”, Agronomía Colombiana, 40(3), pp. 361–371. doi: 10.15446/agron.colomb.v40n3.105039.

IEEE

[1]
M. Vásquez-Martínez, P. Lizarazo-Peña, E. Darghan, L. P. Moreno-Fonseca, and S. Magnitskiy, “Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery”, Agron. Colomb., vol. 40, no. 3, pp. 361–371, Sep. 2022.

MLA

Vásquez-Martínez, M., P. Lizarazo-Peña, E. Darghan, L. P. Moreno-Fonseca, and S. Magnitskiy. “Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery”. Agronomía Colombiana, vol. 40, no. 3, Sept. 2022, pp. 361-7, doi:10.15446/agron.colomb.v40n3.105039.

Turabian

Vásquez-Martínez, Mariam, Pedro Lizarazo-Peña, Enrique Darghan, Liz Patricia Moreno-Fonseca, and Stanislav Magnitskiy. “Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery”. Agronomía Colombiana 40, no. 3 (September 1, 2022): 361–371. Accessed October 6, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/105039.

Vancouver

1.
Vásquez-Martínez M, Lizarazo-Peña P, Darghan E, Moreno-Fonseca LP, Magnitskiy S. Leaf area prediction models from growth measurements in Andean blueberry (Vaccinium meridionale Swartz) in the nursery. Agron. Colomb. [Internet]. 2022 Sep. 1 [cited 2024 Oct. 6];40(3):361-7. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/105039

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

1144

Downloads

Download data is not yet available.