Ocimum gratissimum L.: A natural alternative against fungi associated with bean and maize seeds during storage
Ocimum gratissimum L.: una alternativa natural contra hongos asociados con semillas de frijol y maíz durante el almacenamiento
DOI:
https://doi.org/10.15446/agron.colomb.v40n3.105851Keywords:
antifungical activity, antioxidant capacity, Aspergillus, Rhizopus (en)actividad antifúngica, capacidad antioxidante, Aspergillus, Rhizopus (es)
Downloads
The aim of the study was to evaluate in vitro antioxidant and antifungal activities of the ethanolic extract and its fractions from Ocimum gratissimum leaves. The ethanolic extract was obtained by maceration in ethanol and subsequent fractionation with solvents of increasing polarity (hexane, dichloromethane, ethyl acetate and butanol). The Minimum Inhibitory Concentration (MIC) was determined for the ethanol extract and dichloromethane fraction. The antioxidant capacity was evaluated by DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) free radical scavenging methods, and by FRAP (Ferric Reducing Antioxidant Power). The in vitro antifungal effect was determined by the agar diffusion method on Aspergillus sp. and Rhizopus sp. fungi associated with corn and bean seeds during storage. The best samples with antifungal effect were determined by gas chromatography-mass spectrometry (GC/MS). The ethanolic extract had strong antioxidant capacity for all tested methods (DPPH 371.10±2.98 μg ml-1, ABTS 182.43±1.10 μg ml-1, FRAP 262.39±3.61 TEAC). Regarding the antifungal activity, the ethanolic extract and dichloromethane fraction resulted in total suppression (100%) of fungal growth and MIC ranged from 0.625 to 1.25 mg ml-1. In the GC/MS analysis, 22 substances were detected in all samples evaluated, with predominance of eugenol. These results indicated high biological potential of this plant as a biofungicide
El objetivo del estudio fue evaluar in vitro las actividades antioxidantes y antifúngicas del extracto etanólico y sus fracciones a partir de las hojas de Ocimum gratissimum. El extracto etanólico se obtuvo por maceración en etanol y posterior fraccionamiento con disolventes de polaridad creciente (hexano, diclorometano, acetato de etilo y butanol). La Concentración Mínima Inhibitoria (CMI) se determinó para el extracto de etanol y la fracción de diclorometano. La capacidad antioxidante se evaluó mediante los métodos de eliminación de radicales libres DPPH (2,2-difenil-1-picril-hidrazil-hidrato) y ABTS (ácido 2,2’-azino-bis(3-etilbenzotiazolina-6-sulfónico)) por PARF (Poder Antioxidante Reductor Férrico). El efecto antifúngico in vitro se determinó mediante el método de difusión de agar sobre hongos Aspergillus sp. y Rhizopus sp. asociados con semillas de frijol y maiz durante el almacenamiento. Las mejores muestras con efecto antifúngico se determinaron por cromatografía de gases acoplada a espectrometría de masas (CG/EM). El extracto etanólico presentó fuerte capacidad antioxidante para todos los métodos probados (DPPH 371.10±2.98
μg ml-1, ABTS 182.43±1.10 μg ml-1, PARF 262.39±3.61 TEAC). En cuanto a la actividad antifúngica, el extracto etanólico y la fracción de diclorometano mostraron supresión total (100%) del crecimiento fúngico y la CMI varió de 0.625 a 1.25 mg ml-1. En el análisis CG/EM se detectaron 22 sustancias en todas las muestras evaluadas, con predominio de eugenol. Estos resultados indicaron un alto potencial biológico de esta planta como biofungicida.
References
Barros, S. T., Oliveira, N. D., & Maia, L. C. (1995). Efeito de extrato de alho (Allium sativum) sobre o crescimento micelial e germinação de conídios de Curvularia spp. e Alternaria spp. Summa Phytopathologica, 21(2), 168–170.
Benelli, G., Pavela, R., Maggi, F., Wandjou, J. G. N., Fofie, N. G. B. Y., Koné-Bamba, D., Sagratini, G., Vittori, S., & Caprioli, G. (2019). Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Industrial Crops and Products, 132, 377–385. https://doi.org/10.1016/j.indcrop.2019.02.047 DOI: https://doi.org/10.1016/j.indcrop.2019.02.047
Casagrande, R., Georgetti, S. R., Verri Jr, W. A., Borin, M. F., Lopez, R. F. V., & Fonseca, M. J. V. (2007). In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity. International Journal of Pharmaceutics, 328(2), 183–190. https://doi.org/10.1016/j.ijpharm.2006.08.006 DOI: https://doi.org/10.1016/j.ijpharm.2006.08.006
Chowdhary, K., Kumar, A., Sharma, S., Pathak, R., & Jangir, M. (2018). Ocimum sp.: Source of biorational pesticides. Industrial Crops and Products, 122, 686–701. https://doi.org/10.1016/j.indcrop.2018.05.068 DOI: https://doi.org/10.1016/j.indcrop.2018.05.068
Dambolena, J. S., Zunino, M. P., López, A. G., Rubinstein, H. R., Zygadlo, J. A., Mwangi, J. W., Thoithim G.N., Kibwage, I. O., Mwalukumbi, J. M., & Kariuki, S. T. (2010). Essential oils composition of Ocimum basilicum L. and Ocimum gratissimum L. from Kenya and their inhibitory effects on growth and fumonisin production by Fusarium verticillioides. Innovative Food Science & Emerging Technologies, 11(2), 410–414. https://doi.org/10.1016/j.ifset.2009.08.005 DOI: https://doi.org/10.1016/j.ifset.2009.08.005
Duh, P. D., Du, P. C., & Yen, G. C. (1999). Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food and Chemical Toxicology, 37(11), 1055–1061. https://doi.org/10.1016/S0278-6915(99)00096-4 DOI: https://doi.org/10.1016/S0278-6915(99)00096-4
Dzoyem, J. P., Nganteng, D. N. D., Melong, R., Wafo, P., Ngadjui, B., Allémann, E., & Delie, F. (2021). Bioguided identification of pentacyclic triterpenoids as anti-inflammatory bioactive constituents of Ocimum gratissimum extract. Journal of Ethnopharmacology, 268, Article 113637. https://doi.org/10.1016/j.jep.2020.113637 DOI: https://doi.org/10.1016/j.jep.2020.113637
Elisée, K. K., Pintea, A., Constantin, O. O., Odagiu, A., David, N. J., & Joseph, D. A. (2020). Total phenolic compounds extraction in leaves of Ocimum gratissimum L. and their potential activity against some agricultural contaminants. Asian Research Journal of Agriculture, 13(4), 1–10. https://doi.org/10.9734/arja/2020/v13i430108 DOI: https://doi.org/10.9734/arja/2020/v13i430108
Faria, T. D. J., Ferreira, R. S., Yassumoto, L., Souza, J. R. P. D., Ishikawa, N. K., & Barbosa, A. D. M. (2006). Antifungal activity of essential oil isolated from Ocimum gratissimum L. (eugenol chemotype) against phytopathogenic fungi. Brazilian Archives of Biology and Technology, 49(6), 867–871. https://doi.org/10.1590/S1516-89132006000700002 DOI: https://doi.org/10.1590/S1516-89132006000700002
Hamma, I. I., Tafinta, I. Y., Abdulmalik, A., Theophilus, J., & Abubakar, M. (2020). Phytochemical screening and antibacterial activity of the crude extract of scent leaf (Ocimum gratissimum) on Escherichia coli and Staphylococcus aureus. Asian Plant Research Journal, 5(2), 1–7. https://doi.org/10.9734/aprj/2020/v5i230101 DOI: https://doi.org/10.9734/aprj/2020/v5i230101
Kordali, S., Cakir, A., Zengin, H., & Duru, M. E. (2003). Antifungal activities of the leaves of three Pistacia species grown in Turkey. Fitoterapia, 74(1-2), 164–167. https://doi.org/10.1016/S0367-326X(02)00320-9 DOI: https://doi.org/10.1016/S0367-326X(02)00320-9
Mann, A. (2012). Phytochemical constituents and antimicrobial and grain protectant activities of clove basil (Ocimum gratissimum L.) grown in Nigeria. International Journal of Plant Research, 2(1), 51–58. https://doi.org/10.5923/j.plant.20120201.08 DOI: https://doi.org/10.5923/j.plant.20120201.08
Matos, F. (2007). Plantas medicinais-guia de seleção e emprego de plantas medicinais usadas em fitoterapia no nordeste do Brasil. Universidade Federal do Ceará.
Mohr, F. B. M., Lermen, C., Gazim, Z. C., Gonçalves, J. E., & Alberton, O. (2017). Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genetics and Molecular Research, 16(1), Article gmr16019542. https://doi.org/10.4238/gmr16019542 DOI: https://doi.org/10.4238/gmr16019542
National Institute of Standards and Technology (NIST). (2018). NIST Chemistry WebBook. https://webbook.nist.gov/chemistry
Nwofor, C. N., Oyeka, A. C., Onyenwe, E. N., & Fajana A. (2021). Phytochemical analysis and in vitro screening of antifungal activity of Jatropha multifida, Euphorbia hirta, Occimum gratissimum and Mitracarpus scaber leaves extract. GSC Biological and Pharmaceutical Sciences, 14(3), 98–112. https://doi.org/10.30574/gscbps.2021.14.3.0023 DOI: https://doi.org/10.30574/gscbps.2021.14.3.0023
Onaebi, C., Onyeke, C., Osibe, D., Ugwuja, F., Okoro, A., & Onyegirim, P. (2020). Antimicrobial activity of Ocimum gratissimum L. and Carica papaya L. against postharvest pathogens of avocado pear (Persea americana Mill.). Journal of Plant Pathology, 102, 319–325. https://doi.org/10.1007/s42161-019-00420-5 DOI: https://doi.org/10.1007/s42161-019-00420-5
Onyebuchi, C., & Kavaz, D. (2020). Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Scientific Reports, 10(1), Article 21760. https://doi.org/10.1038/s41598-020-78847-5 DOI: https://doi.org/10.1038/s41598-020-78847-5
Ouyang, X., Wei, L., Pan, Y., Huang, S., Wang, H., Begonia, G. B., & Ekunwe, S. I. (2013). Antioxidant properties and chemical constituents of ethanolic extract and its fractions of Ocimum gratissimum. Medicinal Chemistry Research, 22(3), 1124–1130. https://doi.org/10.1007/s00044-012-0113-z DOI: https://doi.org/10.1007/s00044-012-0113-z
Penido, A. B., Morais, S. M. D., Ribeiro, A. B., & Silva, A. Z. (2016). Ethnobotanical study of medicinal plants in Imperatriz, State of Maranhão, Northeastern Brazil. Acta Amazonica, 46(4), 345–354. https://doi.org/10.1590/1809-4392201600584 DOI: https://doi.org/10.1590/1809-4392201600584
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Sánchez-González, I., Jiménez-Escrig, A., & Saura-Calixto, F. (2005). In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). Food Chemistry, 90(1-2), 133–139. https://doi.org/10.1016/j.foodchem.2004.03.037 DOI: https://doi.org/10.1016/j.foodchem.2004.03.037
Silva, A. O. D., Silva, A. O. D., Gomes, J. A., Oliveira, R. C. D., Silva, D. A. S., & Viégas, I. D. J. M. (2021). Armazenamento de grãos na agricultura familiar: principais problemáticas e formas de armazenamento na região nordeste paraense. Research, Society and Development, 10(1), Article e36610111835. https://doi.org/10.33448/rsd-v10i1.11835 DOI: https://doi.org/10.33448/rsd-v10i1.11835
Sousa, C. M. D. M., Silva, H. R., Vieira-Jr., G. M., Ayres, M. C. C., Costa, C. L. S. D., Araújo, D. S., Cavalcante, L. C. D., Barros, E. D. S., Araújo, P. B. D. M., Brandão, M. S., & Chaves, M. H. (2007). Fenóis totais e atividade antioxidante de cinco plantas medicinais. Química Nova, 30(2), 351–355. https://doi.org/10.1590/S0100-40422007000200021 DOI: https://doi.org/10.1590/S0100-40422007000200021
Talibi, I., Askarne, L., Boubaker, H., Boudyach, E. H., Msanda, F., Saadi, B., & Aoumar, A. A. B. (2012). Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop Protection, 35, 41–46. https://doi.org/10.1016/j.cropro.2011.12.016 DOI: https://doi.org/10.1016/j.cropro.2011.12.016
Uchegbu, R. I., Akalazu, J. N., & Sokwaibe, C. E. (2019). An evaluation of the chemical compositions and antifungal activity of Ocimum gratissimum (Nchuanwu) leaves against some plant pathogens. Asian Journal of Applied Chemistry Research, 2(3-4), 1–7. https://doi.org/10.9734/ajac/2018/v2i3-430078 DOI: https://doi.org/10.9734/ajacr/2018/v2i3-430078
Zareiyan, F., & Khajehsharifi, H. (2022). In-vitro phytochemical analysis of essential oil and methanolic and hydromethanolic extracts of Ocimum gratissimum. Journal of Plant Biochemistry and Biotechnology, 31, 894–906. https://doi.org/10.1007/s13562-022-00768-3 DOI: https://doi.org/10.1007/s13562-022-00768-3
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Mehmet Veysi Cetiz, Musa Isah, Gunes Ak, Kassim Bakar, Azali Ahamada Himidi, Andilyat Mohamed, Jasmina Glamočlija, Filip Nikolić, Uroš Gašic, Carlos L. Cespedes‐Acuna, Gokhan Zengin. (2024). Exploring of Chemical Profile and Biological Activities of Three Ocimum Species From Comoros Islands: A Combination of In Vitro and In Silico Insights. Cell Biochemistry and Function, 42(7) https://doi.org/10.1002/cbf.70000.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







