Published

2024-08-30

Photosynthesis in fruit crops of the high tropical Andes: A systematic review

La fotosíntesis en los cultivos frutales de trópico alto de los Andes: una revisión sistemática

DOI:

https://doi.org/10.15446/agron.colomb.v42n2.113887

Keywords:

gas exchange, chlorophyll fluorescence, light, chloroplasts, ecophysiology (en)
intercambio de gases, fluorescencia de la clorofila, luz, cloroplastos, ecofisiología (es)

Downloads

Authors

Commercially grown fruit crops in the high tropical Andes zones from 1,600 to 3,200 m a.s.l. are increasingly important in the world market, mainly because they are exotic fruits, and also because they are produced by hundreds of small growers. Photosynthesis is one of the most important physiological processes involved in the production and quality of fruit crops. However, many aspects of this process are unknown in fruit species grown in the Andean highlands. This systematic review presents the main themes and advances in research on photosynthesis of Andean fruit crops. A systematic literature search was carried out in the Scopus and Web of Science databases using the RStudio Bibliometrix package tool and VOSviewer version 1.6.16 software. Research on this topic has focused on high tropical Andean countries with climatic conditions for the growth of fruit species. Notably, the research addresses themes related to the photosynthesis of Andean highland fruit crops in Brazil and Colombia. The authors cover research topics from horticulture and plant physiology to photosynthesis and leaf anatomy and acclimation, where most research literature currently focuses. In most of the analyzed fruit crops, photosynthetic parameters such as maximum photosynthesis (Amax), light compensation point, light saturation point, and apparent quantum yield are known. These are important advances in the knowledge of the fluorescence of chlorophyll a, which is mainly used as a tool to characterize the eco-physiological response of these fruit species to different environments.

Los frutales cultivados comercialmente en las zonas de trópico alto andino, de 1.600 a 3,200 m s.n.m., son cada vez más importantes en el mercado mundial, principalmente porque se consideran frutas exóticas nutritivas, y también porque son producidas por cientos de pequeños cultivadores. La fotosíntesis se considera uno de los procesos fisiológicos más importantes involucrados en la producción y calidad de los cultivos de frutales, pero muchos aspectos de este proceso son desconocidos en las especies cultivadas en los Andes. Esta revisión sistemática presenta los principales temas y avances en la investigación sobre la fotosíntesis de cultivos de frutas andinas. Se realizó una búsqueda sistemática de literatura en las bases de datos Scopus y Web of Science utilizando la herramienta RStudio Bibliometrix y el software VOSviewer versión 1.6.16. La investigación sobre este tema se ha centrado en países de trópico alto andino con condiciones climáticas apropiadas para el crecimiento de estas especies frutales. Se abordan temas relacionados con la fotosíntesis de cultivos de frutas de alta montaña andina centrados en Brasil y Colombia. Los autores cubren temas desde la horticultura y la fisiología vegetal hasta la fotosíntesis, y tópicos como la anatomía foliar y la aclimatación, donde la mayor parte de la investigación se ha realizado recientemente. En la mayoría de los cultivos de frutas analizados, se conocen parámetros fotosintéticos como fotosíntesis máxima (Amax), punto de compensación de luz, punto de saturación de luz y rendimiento cuántico aparente, que son avances importantes en el conocimiento de la fluorescencia de la clorofila a, la cual se utiliza principalmente como herramienta para caracterizar la respuesta ecofisiológica de estas especies frutales en diferentes ambientes.

References

Ardila, G. H., Fischer, G., & García, J. C. (2015). La poda de tallos y racimos florales afecta la producción de frutos de lulo (Solanum quitoense var. septentrionale). Revista Colombiana de Ciencias Hortícolas, 9(1), 24–37. https://doi.org/10.17584/rcch.2015v9i1.3743

Barbosa, E. A. A., Ayub, R. A., Luz, Â., Pessenti, I. L., & Pereira, A. B. (2019). Foliar gas exchange, fruit quality and water use efficiency of cape gooseberry under different irrigation depths and mulching at greenhouse conditions. Revista Brasileira de Fruticultutra, 41(4), Article e-001. https://doi.org/10.1590/0100-29452019001

Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. (2005). Global centers of vascular plant diversity. Nova Acta Leopoldina NF, 92(342), 61–83. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=736f49cc8a508813196c38aa341580d447523976

Benavides, H. O., Simbaqueva, O., & Zapata, H. J. (2017). Atlas de radiación solar, ultravioleta y ozono de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá. https://www.andi.com.co//Uploads/RADIACION.compressed.pdf

Bergmann, D. C., & Sack, F. D. (2007). Stomatal development. Annual Review of Plant Biology, 58, 163–181. https://doi.org/10.1146/annurev.arplant.58.032806.104023

Betancourt-Osorio, J., Sánchez-Canro, D., & Restrepo-Díaz, H. (2016). Effect of nitrogen nutritional statuses and waterlogging conditions on growth parameters, nitrogen use efficiency and chlorophyll fluorescence in tamarillo seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 375−381. https://doi.org/10.15835/nbha44210438

Bilen, C., El Chami, D., Mereu, V., Trabucco, A., Marras, S., & Spano, D. (2022). A systematic review on the impacts of climate change on coffee agrosystems. Plants, 12(1), Article 102. https://doi.org/10.3390/PLANTS12010102

Blancke, R. (2016). Tropical fruits and other edible plants of the world. Cornell University Press. https://www.cornellpress.cornell.edu/book/9780801454172/tropical-fruits-and-other-edible-plants-of-the-world/

Bonnet, J. G., & Cárdenas, J. F. (2012). Tomate de árbol (Cyphomandra betacea Sendt.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 825–850). Produmedios.

Campos, D., Chirinos, R., Gálvez Ranilla, L., & Pedreschi, R. (2018). Bioactive potential of Andean fruits, seeds, and tubers. Advances in Food Nutrition and Research, 84, 287–343. https://doi.org/10.1016/bs.afnr.2017.12.005

Campos, T., & Quintero, O. C. (2012). Curuba (Passiflora tripartita var. mollissima). In Fischer, G. (Ed.), Manual para el cultivo de frutales en el trópico (pp. 421–442). Produmedios. https://content.e-bookshelf.de/media/reading/L-4055717-8b4ad5b5bc.pdf

Cárdenas-Pira, W. T., Torres-Moya, E., Magnitskiy, S., & Melgarejo, L. M. (2021). Physiological responses of purple passion fruit (Passiflora edulis Sims f. edulis) plants to deficiencies of the macronutrients, Fe, Mn, and Zn during vegetative growth. International Journal of Fruit Science, 21(1), 344–358. https://doi.org/10.1080/15538362.2021.1890673

Carrillo-Perdomo, E., Aller, A., Cruz-Quintana, S. M., Giampieri, F., & Alvarez-Suarez, J. M. (2015). Andean berries from Ecuador: A review on botany, agronomy, chemistry and health potential. Journal of Berry Research, 5(2), 49–69. https://doi.org/10.3233/JBR-140093

Castañeda-Murillo, C. C., Rojas-Ortiz, J. G., Sánchez-Reinoso, A. D., Chavez-Arias, C. C., & Restrepo-Díaz, H. (2022). Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants. Heliyon, 8(2), Article e08977. https://doi.org/10.1016/j.heliyon.2022.e08977

Chávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and fusarium wilt infection. Agronomy, 9(5), Article 213. https://doi.org/10.3390/agronomy9050213

Chávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2020). Physiological responses to the foliar application of synthetic resistance elicitors in cape gooseberry seedlings infected with Fusarium oxysporum f. sp. physalis. Plants, 9(2), Article 176. https://doi.org/10.3390/plants9020176

Clark, C. J., & Richardson, A. C. (2002). Biomass and mineral nutrient partitioning in a developing tamarillo (Cyphomandra betacea) crop. Scientia Horticulturae, 94(1-2), 41–51. https://doi.org/10.1016/S0304-4238(01)00355-7

Clavijo-Sánchez, N., Flórez-Velasco, N., & Restrepo-Díaz, H. (2015). Potassium nutritional status affects physiological response of tamarillo plants (Cyphomandra betacea Cav.) to drought stress. Journal of Agricultural Science and Technology, 17, 1839–1849. http://ir.jkuat.ac.ke/handle/123456789/3757?show=full

Crane, J. H., Balerdi, C. F., & Schaffer, B. (2019). Managing your tropical fruit grove under changing water table levels. Document HS957. Horticultural Sciences Department, UF/IFAS Extension. https://edis.ifas.ufl.edu/publication/HS202

Della Corte, V., Del Gaudio, G., Sepe, F., & Sciarelli, F. (2019). Sustainable tourism in the open innovation realm: A bibliometric analysis. Sustainability, 11(21), Article 6114. https://doi.org/10.3390/SU11216114

Díaz-Leguizamón, J. J., Chingaté-Cruz, O. F., Sánchez-Reinoso, A. D., & Restrepo-Díaz, H. (2016). The effect of foliar applications of a bio-stimulant derived from algae extract on the physiological behavior of lulo seedlings (Solanum quitoense cv. septentrionale). Ciencia e Investigación Agraria, 43(1), 25–37. https://doi.org/10.4067/S0718-16202016000100003

Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310–318. https://doi.org/10.1016/j.cosust.2020.10.015

Fernández, G. E., Melgarejo, L. M., & Rodríguez, N. A. (2014). Algunos aspectos de la fotosíntesis y potenciales hídricos de la granadilla (Passiflora ligularis Juss.) en estado reproductivo en el Huila, Colombia. Revista Colombiana de Ciencias Hortícolas, 8(2), 206–216. https://doi.org/10.17584/rcch.2014v8i2.3214

Figueiredo, F. R. A., Ribeiro, J. E. S., Nóbrega, J. S., Celedônio, W. F., Fátima, R. T., Ferreira, J. T. A., Dias, T. J., & Albuquerque, M. B. (2021). Photosynthesis of Physalis peruviana under different densities of photons and saline stress. Bioscience Journal, 37, Article e37082. https://doi.org/10.14393/BJ-v37n0a2021-53948

Fischer, G. (Ed.). (2012). Manual para el cultivo de frutales en el trópico. Produmedios.

Fischer, G. (2003). Ecofisiología, crecimiento y desarrollo de la feijoa. In G. Fischer, D. Miranda, G. Cayón, & M. Mazorra (Eds.), Cultivo, poscosecha y exportación de la feijoa (Acca sellowiana Berg) (pp. 9–26). Produmedios.

Fischer, G., Balaguera-López, H. E., & Melgarejo, L. M. (2024). Crop physiology of Physalis peruviana. In M. F. Ramadan (Ed.), Handbook of goldenberry (Physalis peruviana): Cultivation, processing and functionality (pp. 101–119). Elsevier.

Fischer, G., Balaguera-López, H. E., Parra-Coronado, A., & Magnitskiy, S. (2024). Adaptation of fruit trees to different elevations in the tropical Andes. In S. Tripathi, R. Bhadouria, P. Srivastava, R. Singh, & R. S. Devi (Eds.). Ecophysiology of tropical plants - recent trends and future perspectives (pp. 193–208). CRC Press.

Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - An Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. https://doi.org/10.17584/rcch.2020v14i1.10893

Fischer, G., & Miranda, D. (2021). Review on the ecophysiology of important Andean fruits: Passiflora L. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9471–9481. https://doi.org/10.15446/rfnam.v74n2.91828

Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703

Fischer, G., & Parra-Coronado, A. (2020). Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret): A review. Agronomía Colombiana, 38(3), 388–397. https://doi.org/10.15446/agron.colomb.v38n3.88982

Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana. 40(2), 212–227. https://doi.org/10.15446/agron.colomb.v40n2.101854

Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2020). Aspectos del cultivo y de la fisiología de feijoa (Acca sellowiana [Berg] Burret). Una revisión. Ciencia y Agricultura, 17(3), 11–24. https://doi.org/10.19053/01228420.v17.n3.2020.11386

Fischer, G., Ramírez, F., & Casierra-Posada, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana, 34(2), 190–199. https://doi.org/10.15446/agron.colomb.v34n2.56799

Fischer, G., Ulrichs, C., & Ebert, G. (2015). Contents of non-structural carbohydrates in the fruiting cape gooseberry (Physalis peruviana L.) plant. Agronomía Colombiana, 33(2), 155–163. https://doi.org/10.15446/agron.colomb.v33n2.51546

Flórez-Velasco, N., Balaguera-López, H. E., & Restrepo-Díaz, H. (2015). Effects of foliar urea application on lulo (Solanum quitoense cv. septentrionale)plants grown under different waterlogging and nitrogen conditions. Scentia Horticulturae, 186, 154–162. https://doi.org/10.1016/j.scienta.2015.02.021

García-Castro, A., Volder, A., Restrepo-Díaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of different drought stress regimens on growth, leaf gas exchange properties, and carboxylationactivity in purple passionflower plants. Journal of the American Society for Horticultural Science, 142(1), 57–64. https://doi.org/10.21273/JASHS03961-16

Germanà, C., & Continella, A. (2004). Physiological behaviour of some subtropical species in Mediterranean area. Acta Horticulturae, 632, 117–123. https://doi.org/10.17660/ActaHortic.2004.632.15

Guerrero, A. L., Gallucci, S. S., Michalijos, P., & Visciarelli, S. M. (2011). Países andinos: aportes teóricos para un abordaje integrado desde las perspectivas geográfica y turística. Huellas, 15, 121–138. https://repo.unlpam.edu.ar/handle/unlpam/2751

Herrera-Viedma, E., Martínez, M. A., & Herrera, M. (2016). Bibliometric tools for discovering information in database. In H. Fujita, M. Ali, A. Selamat, J. Sasaki, & M. Kurematsu (Eds.), Trends in applied knowledge-based systems and data science, (International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 193–203. IEA/AIE 2016. Lecture Notes in Computer Science, Vol. 9799). Springer. https://doi.org/10.1007/978-3-319-42007-3_17

Jaime-Guerrero, M., Álvarez-Herrera, J., & Fischer, G. (2022). Aspectos de la fisiología y el cultivo del lulo (Solanum quitoense Lam.) en Colombia: una revisión. Revista de Investigación Agraria y Ambiental, 13(1), 131–148. https://doi.org/10.22490/21456453.4641

Jenkins, G. I. (2009). Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 60, 407–431. https://doi.org/10.1146/annurev.arplant.59.032607.092953

Jiménez-Bohórquez, E. F., Díaz-Arias, M. A., & Balaguera-López, H. E. (2024). Exogenous brassinosteroids application in purple passion fruit plants grafted onto a sweet calabash passion fruit rootstock and under water stress. Revista Colombiana de Ciencias Hortícolas, 18(1), Article e16514. https://doi.org/10.17584/rcch.2024v18i1.16514

Körner, C. (2023). Concepts in alpine plant ecology. Plants, 12(14), Article 2666. https://doi.org/10.3390/plants12142666

Körner, C. (2007). The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006

Lambers, H., & Oliveira, R. S. (2019). Plant physiological ecology (3rd ed.). Springer. https://doi.org/10.1007/978-3-030-29639-1

Li, J., Xie, R. Z., Wang, K. R., Hou, P., Ming, B., Zhang, G. Q., Liu, G. Z., Wu, M., Yang, Z. S., & Li, S. K. (2018). Response of canopy structure, light interception and grain yield to plant density in maize. The Journal of Agricultural Science, 156(6), 785–794. https://doi.org/10.1017/S0021859618000692

Ligarreto, G. A. (2012). Recursos genéticos de especies frutícolas en Colombia. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 35–53). Produmedios.

Lima, L., de Jesus, O., Soares, T., dos Santos, I., Olivera, E., & Coelho, M. (2020). Growth, physiological, anatomical and nutritional responses of two phenotypically distinct passion fruit species (Passiflora L.) and their hybrid under saline conditions. Scientia Horticulturae, 263, Article 109037. https://doi.org/10.1016/j.scienta.2019.109037

Lizarazo, M. A., Hernández, C. A., Fischer, G., & Gómez, M. I. (2013). Response of the banana passion fruit (Passiflora tripartita var. mollissima) to different levels of nitrogen, potassium and magnesium. Agronomía Colombiana, 31(2), 7–17. https://revistas.unal.edu.co/index.php/agrocol/article/view/37367

Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Florez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, Article 109655. https://doi.org/10.1016/j.scienta.2020.109655

Lu, Z., Ren, T., Pan, Y., Li, X., Cong, R., & Lu, J. (2016). Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L. Scientific Reports, 6, Article 21725. https://doi.org/10.1038/srep21725

Martínez-Vega, R. R., Fischer, G., Herrera, A., Chaves, B., & Quintero, O. C. (2008). Características físico-químicas de frutos de feijoa influenciadas por la posición en el canopi. Revista Colombiana de Ciencias Hortícolas, 2(1), 21–32. https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/1170

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – A practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/jexbot/51.345.659

Mayorga, M. J. (2016). Caracterización ecofisiológica de curuba (Passiflora tripartita var. mollissima) en dos condiciones ambientales [Master thesis, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/59400

Mayorga, M., Fischer, G., Melgarejo, L. M., & Parra-Coronado, A. (2020). Growth, development and quality of Passiflora tripartita var. mollissima fruits under two environmental tropical conditions. Journal of Applied Botany and Food Quality, 93(1), 66–75. https://doi.org/10.5073/JABFQ.2020.093.009

Medina Cano, C. I., Martínez Bustamante, E., Lobo Arias, M., López Núñez, J. C., & Riaño Herrera, N. M. (2006). Comportamiento bioquímico y del intercambio gaseoso del lulo (Solanum quitoense Lam.) a plena exposición solar en el bosque húmedo montano bajo del oriente antioqueño colombiano. Revista Facultad Nacional de Agronomía Medellín, 59(1), 3123–3146. https://revistas.unal.edu.co/index.php/refame/article/view/24292

Messinger, J., & Lauerer, M. (2015). Solanum quitoense, a new greenhouse crop for Central Europe: Flowering and fruiting respond to photoperiod. Scientia Horticulturae, 183, 23–30. https://doi.org/10.1016/j.scienta.2014.11.015

Miranda, D. (2020). Granadilla: Passiflora ligularis Juss. In A. Rodríguez, F. G. Faleiro, M. Parra, & A. M. Costa (Eds.), Pasifloras – especies cultivadas en el mundo (pp. 65−103.). ProImpress-Brasilia and Cepass.

Moreno, E., Ortiz, B. L., & Restrepo, L. P. (2014). Contenido total de fenoles y actividad antioxidante de pulpa de seis frutas tropicales. Revista Colombiana de Química, 43(3), 41–48. https://doi.org/10.15446/rev.colomb.quim.v43n3.53615

Moreno-Miranda, C., Moreno-Miranda, R., Pilamala-Rosales, A. A., Molina-Sánchez, J. I., & Cerda-Mejía, L. (2019). El sector hortofrutícola de Ecuador: principales características socio-productivas de la red agroalimentaria de la uvilla (Physalis peruviana). Ciencia y Agricultura, 16(1), 31–55. https://doi.org/10.19053/01228420.v16.n1.2019.8809

Naizaque, J., Garcia, G., Fischer, G., & Melgarejo, L. M. (2014). Relación entre la densidad estomática, transpiración y las condiciones ambientales en feijoa (Acca sellowiana [O. Berg] Burret). Revista U.D.C.A Actualidad & Divulgación Científica, 17(1), 115–121. https://doi.org/10.31910/rudca.v17.n1.2014.946

National Research Council. (1989). Lost crops of the Incas. National Academy Press.

Niño, D. E., & Cotrino, E. R. (2015). Análisis del comportamiento ecofisiológico y la germinación en tomate de árbol Solanum betaceum, material naranja común, en el municipio de Pasca-Cundinamarca [Undergraduate thesis, Universidad de Cundinamarca].

Nuñez-Zarantes, V., Rodriguez, D., Luna, L., & Ramos, H. (2024). Cape gooseberry: Crop production system in Colombia. In M. F. Ramadan (Ed.), Handbook of goldenberry (Physalis peruviana): Cultivation, processing and functionality (pp. 55–66). Elsevier.

Ocampo, J., & Posada, P. (2012). Ecología del cultivo de la gulupa (Passiflora edulis f. edulis Sims). In: Ocampo J & Wyckhuys K. (Ed.), Tecnología para el cultivo de la gulupa en Colombia (Passiflora edulis f. edulis Sims) (pp. 29–32). Centro Internacional de Agricultura Tropical (CIAT).

Ocampo, J., Rodríguez, A., & Parra, M. (2020). Gulupa: Passiflora edulis f. edulis Sims. In: Rodríguez A, Faleiro FG, Parra M & Costa AM. (Ed.), Pasifloras - especies cultivadas en el mundo (pp. 139–157). ProImpress-Brasilia, Brasil, DF, Brazil and Cepass, Neiva, Colombia.

Omarova, Z., Platonova, N., Belous, O., & Omarov, M. (2020). Evaluation of the physiological state of feijoa (Feijoa sellowiana Berg) in subtropical Russia. Potravinarstvo Slovak Journal of Food Science, 14, 286–291. https://doi.org/10.5219/1290

Parra-Coronado, A., & Fischer, G. (2013). Maduración y comportamiento poscosecha de la feijoa (Acca sellowiana (O. Berg) Burret). Una revisión. Revista Colombiana de Ciencias Hortícolas, 7(1), 98–110. https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/2039

Parra-Coronado, A., Fischer, G., Balaguera-López, H. E., & Melgarejo, L. M. (2022). Sugar and organic acids content during fruit development in feijoa (Acca sellowiana) fruits grown in two altitudinal zones. Revista de Ciencias Agrícolas, 39(1), 55–69. https://doi.org/10.22267/rcia.223901.173

Parra-Coronado, A., Fischer, G., & Camacho-Tamayo, J. H. (2015). Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia. Bragantia, 74(3), 359–366. https://doi.org/10.1590/1678-4499.0459

Parra-Coronado, A., Fischer, G., & Chaves-Cordoba, B. (2015). Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biológica Colombiana, 20(1), 167–177. https://doi.org/10.15446/abc.v20n1.43390

Paull, R. E., & Duarte, O. (2012). Tropical fruits. (Vol. 2, 2nd ed.). CABI International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845937898.0000

Peña Baracaldo, F. J., & Cabezas Gutiérrez, M. (2014). Aspectos ecofisiológicos de la feijoa (Acca sellowiana Berg) bajo condiciones de riego y déficit hídrico. Revista U.D.C.A Actualidad & Divulgación Científica, 17(2), 381–390. https://doi.org/10.31910/rudca.v17.n2.2014.241

Pérez Martínez, L. V., & Melgarejo Muñoz, L. M. (2015). Photosynthetic performance and leaf water potential of gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biológica Colombiana, 20(1), 183–194. https://doi.org/10.15446/abc.v20n1.42196

Peyre, G., Balslev, H., Font, X., & Tello, J. S. (2019). Fine-scale plant richness mapping of the Andean paramo according to macroclimate. Frontiers in Ecology and Evolution, 7, Article 377. https://doi.org/10.3389/fevo.2019.00377

Pullin, A. S., & Stewart, G. B. (2006). Guidelines for systematic review in conservation and environmental management. Conservation Biology, 20(6), 1647–1656. https://doi.org/10.1111/J.1523-1739.2006.00485.X

Ramírez, F., & Kallarackal, J. (2019). Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review. Scientia Horticulturae, 248, 206–215. https://doi.org/10.1016/j.scienta.2019.01.019

Ramírez-Soler, C. H., Magnitskiy, S., Melo Martínez, S. E., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Photosynthesis, biochemical activity, and leaf anatomy of tree tomato (Solanum betaceum Cav.) plants under potassium deficiency. Journal of Applied Botany and Food Quality, 94, 75–81. https://doi.org/10.5073/JABFQ.2021.094.009

Rengel, Z., Cakmak, I., & White, P. J. (Eds.). (2023). Marschner’s mineral nutrition of plants (4th ed.). Elsevier. https://research-repository.uwa.edu.au/en/publications/marschners-mineral-nutrition-of-plants-fourth-edition

Rodríguez, N. C., Melgarejo, L. M., & Blair, M. W. (2019). Purple passion fruit, Passiflora edulis Sims f. edulis, variability for photosynthetic and physiological adaptation in contrasting environments. Agronomy, 9(5), Article 231. https://doi.org/10.3390/agronomy9050231

Rodríguez Castillo, N., Ambachew, D., Melgarejo, L. M., & Blair, M. W. (2020). Morphological and agronomic variability among cultivars, landraces, and genebank accessions of purple passion fruit, Passiflora edulis f. edulis. HortScience, 55(6), 768–777. https://doi.org/10.21273/HORTSCI14553-19

Rodríguez-Castillo, N. A., & Melgarejo, L. M. (2015). Caracterización ecofisiológica de la granadilla (Passiflora ligularis Juss) bajo dos condiciones ambientales en el departamento del Huila. In L. M. Melgarejo (Ed.), Granadilla (Passiflora ligularis Juss): Caracterización ecofisiológica del cultivo (pp. 17–52). Universidad Nacional de Colombia.

Salleh, S. Z., & Bushroa, A. R. (2022). Bibliometric and content analysis on publications in digitization technology implementation in cultural heritage for recent five years (2016–2021). Digital Applications in Archaeology and Cultural Heritage, 25, Article e00225. https://doi.org/10.1016/J.DAACH.2022.E00225

Sánchez, C., Fischer G., & Sanjuanelo, D. W. (2013). Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer]. Agronomía Colombiana, 31(1), 38–47. https://revistas.unal.edu.co/index.php/agrocol/article/view/35800

Sánchez-Reinoso, A. D., Jiménez-Pulido, Y., Martínez-Pérez, J. P., Pinilla, C. S., & Fischer, G. (2019). Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Revista Colombiana de Ciencias Hortícolas, 13(3), 325–335. https://doi.org/10.17584/rcch.2019v13i3.10017

Sanclemente, M. A., & Peña, E. J. (2008). Crecimiento y eficiencia fotosintética de Ludwigia decurrens Walter (Onagraceae) bajo diferentes concentraciones de nitrógeno. Acta Biológica Colombiana, 13(1), 175–186. https://repositorio.unal.edu.co/handle/unal/22698

Segura-Monroy, S., Uribe-Vallejo, A., Ramírez-Godoy, A., & Restrepo-Diaz, H. (2015). Effect of kaolin application on growth, water use efficiency, and leaf epidermis characteristics of Physalis peruviana seedlings under two irrigation regimes. Journal of Agricultural Science and Technology, 17, 1585–1596. http://ir.jkuat.ac.ke/handle/123456789/3818?show=full

Silva, L. R., Moura, A. P. C., Gil, B. V., Rohr, A., Almeida, S. M. Z., Donazzolo, J., Perboni A. T, Oliveira, F. L. R., Sant’Anna-Santos, B. F., Galond, L., & Danner, M. A. (2024). Morphophysiological changes of Acca sellowiana (Myrtaceae: Myrtoideae) saplings under shade gradient. Brazilian Journal of Biology, 84, Article e252364. https://doi.org/10.1590/1519-6984.252364

Silva, R. G., Alves, R. C., & Zingaretti, S. M. (2020). Increased [CO2] causes changes in physiological and genetic responses in C4 crops: A brief review. Plants, 9(11), Article 1567. https://doi.org/10.3390/plants9111567

Sogamoso Alape, H. J. (2020). Estudio preliminar de la respuesta fisiológica del lulo sin espinas (Solanum quitoense var. quitoense) expuesto a diferentes niveles de radiación durante la etapa vegetativa en la sabana de Bogotá [Undergraduate thesis, Universidad Militar Nueva Granada, Bogotá]. http://hdl.handle.net/10654/35950

Taiz, L., Zeiger, E., Moller, I. A., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed.

Terfa, M. T., Roro, A. G., Olsen, J. E., & Torre, S. (2014). Effects of UV radiation on growth and postharvest characteristics of three pot rose cultivars grown at different altitudes. Scientia Horticulturae, 178, 184–191. https://doi.org/10.1016/j.scienta.2014.08.021

Tominaga, J., Shimada, H., & Kawamitsu, Y. (2018). Direct measurement of intercellular CO2 concentration in a gas-exchange system resolves overestimation using the standard method. Journal of Experimental Botany, 69(8), 1981–1991. https://pubmed.ncbi.nlm.nih.gov/29432576/

Viera, W., Sotomayor, A., & Viteri, P. (2019). Breeding of three Andean fruit crops in Ecuador. Chronica Horticulturae, 59(4), 20–29. https://www.ishs.org/system/files/chronica-documents/ch5904.pdf

Vishwakarma, C., Krishna, G. K., Kapoor, R. T., Mathur, K., Lal, S. K., Saini, R. P., Yadava, P., & Chinnusamy, V. (2023). Bioengineering of canopy photosynthesis in rice for securing global food security: A critical review. Agronomy, 13(2), Article 489. https://doi.org/10.3390/agronomy13020489

How to Cite

APA

Flórez-Velasco, N., Fischer, G. and Balaguera-López, H. E. (2024). Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agronomía Colombiana, 42(2), e113887. https://doi.org/10.15446/agron.colomb.v42n2.113887

ACM

[1]
Flórez-Velasco, N., Fischer, G. and Balaguera-López, H.E. 2024. Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agronomía Colombiana. 42, 2 (May 2024), e113887. DOI:https://doi.org/10.15446/agron.colomb.v42n2.113887.

ACS

(1)
Flórez-Velasco, N.; Fischer, G.; Balaguera-López, H. E. Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agron. Colomb. 2024, 42, e113887.

ABNT

FLÓREZ-VELASCO, N.; FISCHER, G.; BALAGUERA-LÓPEZ, H. E. Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agronomía Colombiana, [S. l.], v. 42, n. 2, p. e113887, 2024. DOI: 10.15446/agron.colomb.v42n2.113887. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/113887. Acesso em: 23 apr. 2025.

Chicago

Flórez-Velasco, Nixon, Gerhard Fischer, and Helber Enrique Balaguera-López. 2024. “Photosynthesis in fruit crops of the high tropical Andes: A systematic review”. Agronomía Colombiana 42 (2):e113887. https://doi.org/10.15446/agron.colomb.v42n2.113887.

Harvard

Flórez-Velasco, N., Fischer, G. and Balaguera-López, H. E. (2024) “Photosynthesis in fruit crops of the high tropical Andes: A systematic review”, Agronomía Colombiana, 42(2), p. e113887. doi: 10.15446/agron.colomb.v42n2.113887.

IEEE

[1]
N. Flórez-Velasco, G. Fischer, and H. E. Balaguera-López, “Photosynthesis in fruit crops of the high tropical Andes: A systematic review”, Agron. Colomb., vol. 42, no. 2, p. e113887, May 2024.

MLA

Flórez-Velasco, N., G. Fischer, and H. E. Balaguera-López. “Photosynthesis in fruit crops of the high tropical Andes: A systematic review”. Agronomía Colombiana, vol. 42, no. 2, May 2024, p. e113887, doi:10.15446/agron.colomb.v42n2.113887.

Turabian

Flórez-Velasco, Nixon, Gerhard Fischer, and Helber Enrique Balaguera-López. “Photosynthesis in fruit crops of the high tropical Andes: A systematic review”. Agronomía Colombiana 42, no. 2 (May 1, 2024): e113887. Accessed April 23, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/113887.

Vancouver

1.
Flórez-Velasco N, Fischer G, Balaguera-López HE. Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agron. Colomb. [Internet]. 2024 May 1 [cited 2025 Apr. 23];42(2):e113887. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/113887

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1

Article abstract page views

333

Downloads