Published

2024-08-30

Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop

Evaluación de la conductividad eléctrica y el pH de una solución nutritiva con sistema de recirculación en el cultivo de rosa

DOI:

https://doi.org/10.15446/agron.colomb.v42n2.115607

Keywords:

horticulture, cut flowers, recirculation drainage,, soilless culture, substrate (en)
horticultura, flores de corte, recirculación de drenaje, cultivo sin suelo, sustrato (es)

Downloads

Authors

Soilless culture systems with drainage recycling require continuous monitoring of electrical conductivity (EC) and pH, which are basic indicators of the chemical state of the solution that determine the extent to which recycling of nutrients is possible. These indicators are influenced by the physical, chemical, and microbiological properties of the substrates, as well as evapotranspiration, substrate temperature, and the stage of plant development. A rose crop cv. ‘Charlotte’ was established in three different substrates composed of mixtures of coconut fiber (CF) and burned rice husk (BRH). An automatic drainage recycling system was implemented with three percentages of nutrient recycling (0, 50, and 100%) to record the changes in EC and pH over 8 weeks of cultivation. This bifactorial experiment was carried out under a split-plot design in randomized complete blocks, where the main plot corresponded to the recycling percentage factor and the subplot to the substrate factor. The EC was significantly higher when recycling the nutrient solution in the following substrates: 35% BRH and 65% CF (35BRH) and 65% BRH and 35% CF (65BRH) at 1, 2, and 3 weeks after pruning (WAP). It was also higher for 100% BRH (100BRH) and 65BRH at 7 and 8 WAP. At 6 WAP, recycling at 50% and 100% had a significant effect on the EC values independent of the substrate. This could be caused by the release of ions and higher water retention, typical of CF, and the high adsorption of ions by the BRH. For pH, the trend was acidification, which was significant for the 100BRH treatment without recycling between 0 and 4 WAP. This could be related to changes in the absorption of ions such as NO3- and the activity of nitrifying microorganisms facilitated by the properties of the CF.

Los sistemas de cultivo sin suelo con reciclaje de drenajes requieren del seguimiento continuo de variables determinantes como la conductividad eléctrica (CE) y el pH, indicadores básicos del estado químico de la solución que determinan hasta dónde son posibles los eventos de reciclaje. Estas variables son influenciadas por las propiedades físicas, químicas y microbiológicas de los sustratos, la evapotranspiración del cultivo, la
temperatura de los sustratos, y el estadio de desarrollo de las plantas sembradas. Un cultivo de rosa cv. ‘Charlotte’ se estableció en sustratos compuestos por tres diferentes mezclas de fibra de coco (FC) y cascarilla de arroz quemada (CAQ), donde se implementó un sistema automático de reciclaje de drenajes con tres porcentajes de reciclaje de nutrientes (0, 50 y 100%), con el objetivo de conocer los cambios en CE y pH a lo largo de 8 semanas de cultivo. Este experimento bifactorial se llevó a cabo bajo un diseño de parcelas divididas en bloques completamente al azar, donde la parcela principal correspondió al factor porcentaje de reciclaje y la subparcela al factor sustrato. A las 1, 2 y 3 semanas después de la poda (SDP) la CE fue significativamente mayor al reciclar la solución en los sustratos: 35% CAQ con 65% FC (35CAQ) y 65% CAQ con 35% FC (65CAQ) y a las 7 y 8 SDP lo fue para 100% CAQ (100CAQ) y 65CAQ. A las 6 SDP hubo un efecto significativo de 50% y 100% de reciclaje independiente del sustrato. Lo anterior pudo ser causado por liberación de iones y alta retención de agua, propias de la FC y la alta adsorción de iones por la CAQ. Para el pH, la tendencia fue la acidificación, siendo significativa para el tratamiento 100CAQ sin reciclaje entre 0 y 4 SDP, lo que posiblemente se relaciona con los cambios en la absorción de iones como el NO3- y la actividad de microorganismos nitrificantes, facilitada por las propiedades de la FC.

References

Arp, D. J., Chain, P. S. G., & Klotz, M. G. (2007). The impact of genoma analyses on our understanding of ammonia-oxidizing bacteria. Annual Review of Microbiology, 61, 503–528. https://doi.org/10.1146/annurev.micro.61.080706.093449

Avrahami, S., & Conrad, R. (2003). Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Applied and Environmental Microbiology, 69(10), 6152–6164. https://doi.org/10.1128/AEM.69.10.6152-6164.2003

Awang, Y., Shazmi Shaharom, A., Mohamad, R. B., & Selamat, A. (2009). Chemical and physical characteristics of cocopeatbased media mixtures and their effects on the growth and development of Celosia cristata. American Journal of Agricultural and Biological Sciences, 4(1), 63–71. https://doi.org/10.3844/ajabssp.2009.63.71

Bar-Yosef, B. (2008). Fertigation management and crops response to solution recycling in semi-closed greenhouses. In M. Raviv, & J. H. Lieth (Eds.), Soilless culture: Theory and practice (pp. 341–424). Elsevier. https://doi.org/10.1016/B978-044452975-6.50011-3

Bar-Yosef, B., Mattson, N. S., & Lieth, H. J. (2009). Effects of NH4:NO3:Urea ratio on cut roses yield, leaf nutrients content and proton efflux by roots in closed hydroponic system. Scientia Horticulturae, 122(4), 610–619. https://doi.org/10.1016/j.scienta.2009.06.019

Blok, C., Voogt, W., & Barbagli, T. (2023). Reducing nutrient imbalance in recirculating drainage solution of stone wool grown tomato. Agricultural Water Management, 285, Article 108360. https://doi.org/10.1016/j.agwat.2023.108360

Bugbee, B. (2004). Nutrient management in recirculating hydroponic culture. Acta Horticulturae, 648, 99–112. https://doi.org/10.17660/ActaHortic.2004.648.12

Cabrera, R. I., & Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience, 38(4), 533–536. https://doi.org/10.21273/HORTSCI.38.4.533

Cabrera, R. I., Solís-Pérez, A. R., & Cuervo-Bejarano, W. J. (2017). Tolerancia y manejo de salinidad, pH y alcalinidad en el cultivo de flores. In V. J. Flórez Roncancio (Ed.), Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel (pp. 63–73). Editorial Universidad Nacional de Colombia.

Chapagain, A. K., & Hoekstra, A. Y. (2003). Virtual water flows between nations in relation to trade in livestock and livestock products (Value of water research report series No. 13). UNESCO-IHE Institute for Water Education. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c683cd65bbcd562fc112d38d5ebde534e6183f92

Coleto, I., Marín-Peña, A. J., Urbano-Gámez, J. A., González-Hernández, A. I., Shi, W., Li, G., & Marino, D. (2023). Interaction of ammonium nutrition with essential mineral cations. Journal of Experimental Botany, 74(19), 6131–6144. https://doi.org/10.1093/JXB/ERAD215

Cuervo, W. J., Flórez, V. J., & González, C. A. (2012). Aspects to consider for optimizing a substrate culture system with drainage recycling. Agronomía Colombiana, 30(3), 379–387. https://revistas.unal.edu.co/index.php/agrocol/article/view/29029

Cuervo-Bejarano, W. J., Flórez, V. J., & González, C. A. (2011). Generalidades de la automatización y control para el reciclaje de drenajes en cultivos bajo cubierta. In V. J. Flórez Roncancio (Ed.), Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo (pp. 247–275). Editorial Universidad Nacional de Colombia.

De Kreij, C., & Van Den Berg, T. H. J. M. (1990). Nutrient uptake, production and quality of Rosa hybrida in rockwool as affected by electrical conductivity of the nutrient solution. In M. L. Van Beusichem (Ed.), Plant nutrition – Physiology and applications (pp. 519–523). Springer. https://doi.org/10.1007/978-94-009-0585-6_86

de Mendiburu, F. (2023). Agricolae: Statistical procedures for agricultural research. https://CRAN.R-project.org/package=agricolae

Grunert, O., Reheul, D., van Labeke, M. C., Perneel, M., Hernandez-Sanabria, E., Vlaeminck, S. E., & Boon, N. (2016). Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. Microbial Biotechnology, 9(3), 389–399. https://doi.org/10.1111/1751-7915.12354

Guzmán González, D. A. (1996). Zonas de vida o formaciones vegetales, área jurisdiccional C.A.R. Corporación Autónoma Regional. https://sie.car.gov.co/server/api/core/bitstreams/4d8734ed-15b4-4992-955b-f696d6a4417c/content

ICA. (2024). Con 700 millones de tallos, Colombia aporta variedad, color y belleza a la celebración de San Valentín. Portal Corporativo ICA. https://www.ica.gov.co/noticias/ica-colombia-exporta-flores-san-valentin-2024

Islabão, G. O., Vahl, L. C., Timm, L. C., Paul, D. L., & Kath, A. H. (2014). Rice husk ash as corrective of soil acidity. Revista Brasileira de Ciência do Solo, 38(3), 934–941. https://doi.org/10.1590/S0100-06832014000300025

Kafkafi, U. (2001). Root zone parameters controlling plant growth in soilless culture. Acta Horticulturae, 554, 27–38. https://doi.org/10.17660/ActaHortic.2001.554.1

Kath, A. H., Islabão, G. O., Vahl, L. C., & Teixeira, J. B. S. (2018). Reaction rate and residual effect of rice husk ash in soil acidity parameters. Revista Ceres, 65(3), 278–285. https://doi.org/10.1590/0034-737X201865030008

Kuan, C. Y., Yuen, K. H., Bhat, R., & Liong, M. T. (2011). Physicochemical characterization of alkali treated fractions from corncob and wheat straw and the production of nanofibres. Food Research International, 44(9), 2822–2829. https://doi.org/10.1016/J.FOODRES.2011.06.023

Londra, P., Paraskevopoulou, A., & Psychogiou, M. (2018). Hydrological behavior of peat- and coir-based substrates and their effect on begonia growth. Water, 10(6), Article 722. https://doi.org/10.3390/W10060722

Maas, E. V., Poss, J. A., & Hoffman, G. J. (1986). Salinity sensitivity of sorghum at three growth stages. Irrigation Science, 7(1), 1–11. https://doi.org/10.1007/BF00255690

Masood, S., Suleman, M., Hussain, S., Jamil, M., Ashraf, M., Siddiqui, M. H., Nazar, R., Khan, N., Jehan, S., Khan, K. S., & Tahir, M. (2023). Fertilizers containing balanced proportions of NH4+ -N and NO3−-N enhance maize (Zea mays L.) yield due to improved nitrogen recovery efficiency. Sustainability, 15(16), Article 12547. https://doi.org/10.3390/SU151612547

Mesa, J. M., Henao, M. C., & Flórez, V. J. (2011). Comportamiento de los microelementos en un sistema de cultivo de clavel en sustrato con recirculación de lixiviados. In V. J. Flórez (Ed.), Avances sobre fisiología de la producción de flores de corte en Colombia (pp. 72–90). Editorial Universidad Nacional de Colombia.

Meselmani, M. A. A. (2022). Nutrient solution for hydroponics. In M. Turan, S. Argin, E. Yildirim, & A. Güneş (Eds.), Recent research and advances in soilless culture (Chapter 2). IntechOpen. https://doi.org/10.5772/intechopen.101604

Neumann, G., & Ludewig, U. (2023). Rhizosphere chemistry influencing plant nutrition. In P. Marschner (Ed.), Marschner’s mineral nutrition of plants (4th ed., pp. 545–585). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00013-7

Nietfeld, H., & Prenzel, J. (2015). Modeling the reactive ion dynamics in the rhizosphere of tree roots growing in acid soils. I. Rhizospheric distribution patterns and root uptake of Mb cations as affected by root-induced pH and Al dynamics. Ecological Modelling, 307, 48–65. https://doi.org/10.1016/j.ecolmodel.2015.02.011

Okafor, P. C., Okon, P. U., Daniel, E. F., & Ebenso, E. E. (2012). Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. International Journal of Electrochemical Science, 7(12), 12354–12369. https://doi.org/10.1016/S1452-3981(23)16550-3

Phonphuak, N., & Chindaprasirt, P. (2015). Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. In F. Pacheco-Torgal, P. B. Lourenco, J. A. Labrincha, S. Kumar, & P. Chindaprasirt (Eds.), Eco-efficient masonry bricks and blocks: design, properties and durability (pp. 103–127). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-305-8.00006-1

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org

Signore, A., Serio, F., & Santamaria, P. (2016). A targeted management of the nutrient solution in a soilless tomato crop according to plant needs. Frontiers in Plant Science, 7, Article 391.https://doi.org/10.3389/fpls.2016.00391

Song, C., Wu, S., Cheng, M., Tao, P., Shao, M., & Gao, G. (2014). Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead (II) from aqueous solutions. Sustainability, 6(1), 86–98. https://doi.org/10.3390/SU6010086

Sonneveld, C., Baas, R., Nijssen, H. M. C., & de Hoog, J. (1999). Salt tolerance of flower crops grown in soilless culture. Journal of Plant Nutrition, 22(6), 1033–1048. https://doi.org/10.1080/01904169909365692

Sonneveld, C., & Voogt, W. (2009). Plant nutrition of greenhouse crops. Springer. https://doi.org/10.1007/978-90-481-2532-6

Stamatakis, A., Papadantonakis, N., Savvas, D., Lydakis-Simantiris, N., & Kefalas, P. (2003). Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Horticulturae, 609, 141–147. https://doi.org/10.17660/ActaHortic.2003.609.18

Udayana, S. K., Naorem, A., & Singh, N. A. (2017). The multipurpose utilization of coconut by-products in agriculture: Prospects and concerns. International Journal of Current Microbiology and Applied Sciences, 6(6), 1408–1415. https://doi.org/10.20546/IJCMAS.2017.606.165

van der Sar, D. M., de Visser, P. H. B., & Vos, J. (2014). Nutrient uptake of four cut rose varieties. Acta Horticulturae, 1034, 559–566. https://doi.org/10.17660/ACTAHORTIC.2014.1034.71

Vélez Carvajal, N. A., Flórez Roncancio, V. J., & Flórez Rivera, A. F. (2014). Comportamiento de variables químicas en un sistema de cultivo sin suelo para clavel en la sabana de Bogotá. Revista Facultad Nacional de Agronomía Medellín, 67(2), 7281–7290. https://doi.org/10.15446/rfnam.v67n2.44170

Vélez-Carvajal, N. A., Melo-Martínez, S. E., & Flórez-Roncancio, V. J. (2014). Behavior of Ca, Mg and S in a soilless culture system for carnation. Revista Chapingo. Serie Horticultura, 20(2), 171–185. https://doi.org/10.5154/R.RCHSH.2013.10.038

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.https://ggplot2.tidyverse.org

Yepes, V. L. F., & Flórez, R. V. J. (2013). Analysis of the electric conductivity and pH behaviors in recycled drainage solution of rose cv. Charlotte plants grown in substrate. Agronomía Colombiana, 31(3), 352–361. https://revistas.unal.edu.co/index.php/agrocol/article/view/29453

How to Cite

APA

Cuervo-Bejarano, W. J., Flórez-Roncancio, V. J. and Melo-Martínez, S. E. (2024). Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop. Agronomía Colombiana, 42(2), e115607. https://doi.org/10.15446/agron.colomb.v42n2.115607

ACM

[1]
Cuervo-Bejarano, W.J., Flórez-Roncancio, V.J. and Melo-Martínez, S.E. 2024. Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop. Agronomía Colombiana. 42, 2 (May 2024), e115607. DOI:https://doi.org/10.15446/agron.colomb.v42n2.115607.

ACS

(1)
Cuervo-Bejarano, W. J.; Flórez-Roncancio, V. J.; Melo-Martínez, S. E. Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop. Agron. Colomb. 2024, 42, e115607.

ABNT

CUERVO-BEJARANO, W. J.; FLÓREZ-RONCANCIO, V. J.; MELO-MARTÍNEZ, S. E. Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop. Agronomía Colombiana, [S. l.], v. 42, n. 2, p. e115607, 2024. DOI: 10.15446/agron.colomb.v42n2.115607. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/115607. Acesso em: 23 apr. 2025.

Chicago

Cuervo-Bejarano, William Javier, Víctor Julio Flórez-Roncancio, and Sandra Esperanza Melo-Martínez. 2024. “Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop”. Agronomía Colombiana 42 (2):e115607. https://doi.org/10.15446/agron.colomb.v42n2.115607.

Harvard

Cuervo-Bejarano, W. J., Flórez-Roncancio, V. J. and Melo-Martínez, S. E. (2024) “Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop”, Agronomía Colombiana, 42(2), p. e115607. doi: 10.15446/agron.colomb.v42n2.115607.

IEEE

[1]
W. J. Cuervo-Bejarano, V. J. Flórez-Roncancio, and S. E. Melo-Martínez, “Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop”, Agron. Colomb., vol. 42, no. 2, p. e115607, May 2024.

MLA

Cuervo-Bejarano, W. J., V. J. Flórez-Roncancio, and S. E. Melo-Martínez. “Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop”. Agronomía Colombiana, vol. 42, no. 2, May 2024, p. e115607, doi:10.15446/agron.colomb.v42n2.115607.

Turabian

Cuervo-Bejarano, William Javier, Víctor Julio Flórez-Roncancio, and Sandra Esperanza Melo-Martínez. “Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop”. Agronomía Colombiana 42, no. 2 (May 1, 2024): e115607. Accessed April 23, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/115607.

Vancouver

1.
Cuervo-Bejarano WJ, Flórez-Roncancio VJ, Melo-Martínez SE. Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop. Agron. Colomb. [Internet]. 2024 May 1 [cited 2025 Apr. 23];42(2):e115607. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/115607

Download Citation