Published

2024-12-31

Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis)

Recubrimiento con ceras y nanopartículas de Ag-TiO2 como alternativas para preservar la calidad poscosecha de frutos de gulupa (Passiflora edulis f. edulis)

DOI:

https://doi.org/10.15446/agron.colomb.v42n3.116582

Keywords:

respiration, ethylene, shelf life, natural language processing, consumer perception (en)
respiración, etileno, vida en anaquel, lenguaje natural de procesamiento, percepción del consumidor (es)

Downloads

Authors

The purple passion fruit (Passiflora edulis f. edulis) is a highly sought climacteric fruit on the global market, but its short postharvest life makes international commercialization difficult. The objective of this study was to evaluate the implementation of wax coatings and silver-doped titanium dioxide nanoparticles (Ag-TiO2-NPs) to preserve the postharvest quality parameters of the purple passion fruits. After the waxes and NPs synthesized using the combustion solution method were applied, the fruits were packed in plastic bags and cardboard boxes. Treatments were evaluated under two different storage conditions: room temperature (18°C, domestic market) and refrigeration (7°C, export market) during 1 week of shelf life. Physicochemical variables were measured periodically, and at the end of each storage condition, a consumer perception analysis was performed using natural language processing. The coating treatments did not favor postharvest behavior in the two experiments, and only increased brightness of the fruits was evident. In the refrigeration experiment, the application of Ag-TiO2-NP alone had a positive effect on the delaying parameters like respiration rate (decrease of up to 55% compared to the control), color (up to 80% less), total soluble solids (lower by ∼ 10%), and titratable acidity (increased ∼ 5%), with no effect on the perception of taste and visual characteristics identified by consumers. However, this treatment did not show consistent effects at room temperature (18°C). These findings support the viability of nanoparticle application as a strategy to preserve the postharvest quality of passion fruit destined for exportation and wax coatings to improve visual fruit perception.

La gulupa (Passiflora edulis f. edulis) es una fruta climatérica altamente deseada en el mercado global, pero con una corta vida poscosecha, lo que dificulta su comercialización en mercados internacionales. El objetivo del presente estudio fue evaluar la implementación de recubrimientos de ceras y nanopartículas de dióxido de titanio dopadas con plata (Ag-TiO2-NPs) para preservar los parámetros de calidad poscosecha del fruto de gulupa. Después de aplicar las ceras y las NPs sintetizadas usando el método de combustión en solución, las frutas se empacaron en bolsas plásticas y luego en cajas de cartón. Posteriormente, se evaluaron los tratamientos bajo dos condiciones de almacenamiento diferentes, a temperatura ambiente (18°C, para el mercado doméstico) y refrigeración (7°C, para el mercado de exportación) + 1 semana de vida útil. Se midieron periódicamente variables fisicoquímicas y, al final del almacenamiento, se realizó un análisis de percepción del consumidor utilizando procesamiento de lenguaje natural. Los resultados indican que los tratamientos con encerado no tuvieron un efecto favorable en el comportamiento poscosecha en los dos experimentos, sólo se evidenció un mayor brillo de los frutos. Por otro lado, en el experimento de refrigeración, la aplicación de únicamente Ag-TiO2 NPs tuvo un efecto positivo al ralentizar parámetros como la tasa de respiración (disminución hasta en un 55% comparado con el control), el color (hasta un 80% menos), los sólidos solubles totales (menores en ∼ 10%) y la acidez titulable (aumentó ∼ 5%), sin efecto en la percepción del sabor y las características visuales identificadas por los consumidores. Pero este tratamiento no mostró efectos consistentes a temperatura ambiente (18°C). Estos hallazgos apoyan la viabilidad de la aplicación de NPs como una estrategia para preservar la calidad poscosecha de la gulupa destinada a la exportación, y de los recubrimientos de cera para mejorar la percepción visual del fruto.

References

Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15(3), 207–225. https://doi.org/10.1016/S0925-5214(98)00086-6

Agronet. (2023). Reporte: área, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

Ali, M., Ahmed, A., Shah, S. W. A., Mehmood, T., & Abbasi, K. S. (2020). Effect of silver nanoparticle coatings on physicochemical and nutraceutical properties of loquat during postharvest storage. Journal of Food Processing and Preservation, 44(10), Article e14808. https://doi.org/10.1111/jfpp.14808

Asociación Nacional de Comercio Exterior - ANALDEX (2023). Informe de las exportaciones colombianas de frutas 2022. https://www.analdex.org/wpcontent/uploads/2023/04/Informe-de-Exportaciones-de-Fruta-2022.pdf?utm_

Barsha, D. C., Singh, M., Khanal, P., Pandey, M., & Pathak, R. (2021). Effect of different edible coatings on postharvest quality of mandarin orange (Citrus reticulata Blanco). Agro Bali: Agricultural Journal, 4(2), 136–144. https://doi.org/10.37637/ab.v4i2.695

Bernal Durán, C. (2022). La gulupa ya es la tercera fruta que más exporta Colombia. Forbes. https://forbes.co/2022/05/13/actualidad/la-gulupa-ya-es-la-tercera-fruta-que-mas-exporta-Colombia

Calderón-Martínez, V., Delgado-Ospina, J., Ramírez-Navas, J. S., Flórez-López, E., Valdés-Restrepo, M. P., Grande-Tovar, C. D., & Chaves-López, C. (2021). Effect of pretreatment with low-frequency ultrasound on quality parameters in gulupa (Passiflora edulis Sims) pulp. Applied Sciences, 11(4), Article 1734. https://doi.org/10.3390/app11041734

Castellanos, D. A., Mendoza, R., Gavara, R., & Herrera, A. O. (2017). Respiration and ethylene generation modeling of “Hass” avocado and feijoa fruits and application in modified atmosphere packaging. International Journal of Food Properties, 20(2), 333–349. http://dx.doi.org/10.1080/10942912.2016.1160921

Cepeda, A., Vélez-Sánchez, J. E., & Balaguera-López, H. E., (2021). Analysis of growth and physicochemical changes in apple cv. Anna in a high-altitude tropical climate. Revista Colombiana de Ciencias Hortícolas, 15(2), Article e12508. https://doi.org/10.17584/rcch.2021v15i2.12508

Chi, H., Song, S., Luo, M., Zhang, C., Li, W., Li, L., & Qin, Y. (2019). Effect of PLA nanocomposite films containing bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Scientia Horticulturae, 249, 192–198. https://doi.org/10.1016/j.scienta.2019.01.059

Chaud, M., Souto, E. B., Zielinska, A., Severino, P., Batain, F., Oliveira-Junior, J., & Alves, T. (2021). Nanopesticides in agriculture: Benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics, 9(6), 131. https://doi.org/10.3390/toxics9060131

Chong, W. Y., Selvaretnam, B., & Soon, L. K. (2014). Natural language processing for sentiment analysis: An exploratory analysis on tweets. In D. Al-Dabass, I. Saad, K. A. Mohamad, & M. H. A. Hijazi (Eds.), Proceedings - 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, ICAIET 2014 (pp. 212–217). Institute of Electrical and Electronics Engineers IEEE. https://doi.org/10.1109/ICAIET.2014.43

Cid-López, M. L., Soriano-Melgar, L. D. A. A., García-González, A., Cortez-Mazatan, G., Mendoza-Mendoza, E., Rivera-Cabrera, F., & Peralta-Rodríguez, R. D. (2021). The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage. Scientia Horticulturae, 287, Article 110285. https://doi.org/10.1016/j.scienta.2021.110285

De Armas Costa, R. J., Martín Gómez, P. F., & Rangel Díaz, J. E. (2022). Gulupa (Passiflora edulis Sims), su potencial para exportación, su matriz y su firma de maduración: una revisión. Ciencia y Agricultura, 19(1), 15–27. https://doi.org/10.19053/01228420.v19.n1.2022.13822

Deganello, F., & Tyagi, A.K. (2018). Solution combustion synthesis, energy and environment: Best parameters for better materials. Progress in Crystal Growth and Characterization of Materials. 64(2), 23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001

Devi, L. S., Kalita, S., Mukherjee, A., & Kumar, S. (2022). Carnauba wax-based composite films and coatings: Recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends in Food Science & Technology, 129, 296–305. https://doi.org/10.1016/j.tifs.2022.09.019

Elatafi, E., & Fang, J. (2022). Effect of silver nitrate (AgNO3) and nano-silver (Ag-NPs) on physiological characteristics of grapes and quality during storage period. Horticulturae, 8(5), Article 419. https://doi.org/10.3390/horticulturae8050419

Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2), 212–227. https://doi.org/10.15446/agron.colomb.v40n2.101854

Fonseca, A. M. A., Geraldi, M. V., Maróstica Junior, M. R., Silvestre, A. J. D., & Rocha, S. M. (2022). Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Research International, 160, Article 111665. https://doi.org/10.1016/j.foodres.2022.111665

Franco, G., Cartagena Valenzuela, J. R., Correa Londoño, G. A., Rojano, B. A., Piedrahíta Correa, A. M., & Lobo Arias, M. (2014). Physicochemical properties of gulupa fruits (Passiflora edulis sims) during pre and postharvest. Revista Iberoamericana de Tecnología Postcosecha, 15(1), 15–30. https://www.redalyc.org/articulo.oa?id=81331357003

Gemail, M. M., Elesawi, I. E., Jghef, M. M., Alharthi, B., Alsanei, W. A., Chen, C., El-Hefnawi, S. M., & Gad, M. M. (2023). Influence of wax and silver nanoparticles on preservation quality of murcott mandarin fruit during cold storage and after shelf-life. Coatings, 13(1), Article 90. https://doi.org/10.3390/coatings13010090

Godrich, S., Kent, K., Murray, S., Auckland, S., Lo, J., Blekkenhorst, L., Penrose, B., Devine, A. (2020). Australian consumer perceptions of regionally grown fruits and vegetables: Importance, enablers, and barriers. International Journal of Environmental Research and Public Health, 17(1), Article 63. https://doi.org/10.3390/ijerph17010063

Gomes, F. R., Barbosa, M. A., Rodrigues, C. D. M., Salazar, A. H., Silveira-Neto, A. N., Assunção, H. F., & Silva, D. F. P. (2021). Evaluation of postharvest properties in different passion fruit species during ripening. Revista Colombiana De Ciencias Hortícolas, 15(1), Article e11948. https://doi.org/10.17584/rcch.2021v15i1.11948

González, A. K., González-Martínez, L. F., Córdoba, L. D., Rincón, A., & Balaguera, H. E. (2021). Regulating the postharvest life of Campomanesia lineatifolia R. & P. fruits through the interaction of ethylene, 1-methylcyclopropene, and low temperatures. Revista Colombiana de Ciencias Hortícolas, 15(2), Article 12499. https://doi.org/10.17584/rcch.2021v15i2.12499

Gutiérrez-Villamil, D. A., Balaguera-López, H. E., & Álvarez-Herrera, J. G. (2023). Brassinosteroids improve postharvest quality, antioxidant compounds, and reduce chilling injury in ‘arrayana’ mandarin fruits under cold storage. Horticulturae, 9(6), Article 622. https://doi.org/10.3390/horticulturae9060622

Hamilton, L. M., & Lahne, J. (2020). Fast and automated sensory analysis: Using natural language processing for descriptive lexicon development. Food Quality and Preference, 83, Article 103926. https://doi.org/10.1016/j.foodqual.2020.103926

Herrera, K. Y., Jaramillo, J. C., Riaño, C., Suarez, C., Sierra, C. A., Zuluaga, C. M., & Castellanos, D. A. (2024). Evaluation of perforation-mediated modified atmosphere packaging for the commercialization of bulk purple passion fruit under refrigeration. Journal of Food Science, 89, 8673–8688. https://doi.org/10.1111/1750-3841.17547

Hmmam, I., Zaid, N., Mamdouh, B., Abdallatif, A., Abd-Elfattah, M., & Ali, M. (2021). Storage behavior of “Seddik” mango fruit coated with CMC and guar gum-based silver nanoparticles. Horticulturae, 7(3), Article 44. https://doi.org/10.3390/horticulturae7030044

Iavicoli, I., Leso, V., Beezhold, D.H., & Shvedova, A.A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology Applied Pharmacology, 329, 96–111. https://doi.org/10.1016/j.taap.2017.05.025

Kassem, H. S., Tarabih, M. E., Ismail, H., & Eleryan, E. E. (2022). Influence of nano-silica/chitosan film coating on the quality of ‘Tommy Atkins’ mango. Processes, 10(2), Article 279. https://doi.org/10.3390/pr10020279

La, D. D., Nguyen-Tri, P., Le, H. K., Nguyen, P.T.M., Nguyen, M. D-B., Vo, A. T. K., Nguyen, M. T. H., Chang, S. W., Tran, L. D., Chung, W. J., & Nguyen, D. D. (2021). Effects of antibacterial ZnO nanoparticles on the performance of a chitosan/gum arabic edible coating for postharvest banana preservation. Progress in Organic Coatings, 151, Article 106057. https://doi.org/10.1016/j.porgcoat.2020.106057

Li, L., Pan, H., Deng, L., Qian, G., Wang, Z., Li, W., & Zhong, C. (2022). The antifungal activity and mechanism of silver nanoparticles against four pathogens causing kiwifruit postharvest rot. Frontiers in Microbiology, 13, Article 988633. https://doi.org/10.3389/fmicb.2022.988633

Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, Article 109655. https://doi.org/10.1016/j.scienta.2020.109655

Naing, A. H., & Kim, C. K. (2020). Application of nano-silver particles to control the postharvest biology of cut flowers: A review. Scientia Horticulturae, 270, Article 109463. https://doi.org/10.1016/j.scienta.2020.109463

Nevado-Velasquez, P. A., Ramírez-Gil, J. G., García, C., Castellanos, D. A., Lopera, A. A., Bezzon, V. N., & Paucar, C. (2023). Synthesis and application of Ag-doped TiO2 nanoparticles with antifungal activity and ethylene inhibition in postharvest of avocado cv. Hass. Biocatalysis and Agricultural Biotechnology, 54, Article 102901. https://doi.org/10.1016/j.bcab.2023.102901

Nicolaï, B. M., Defraeye, T., De Ketelaere, B., Herremans, E., Hertog, L. A. T. M. M., Saeys, W., Torricelli, A., Vandendriessche, T., & Verboven, P. (2014). Nondestructive measurement of fruit and vegetable quality. Annual Review Food of Science and Technology, 5, 285–312. https://doi.org/10.1146/annurev-food-030713-092410

Nxumalo, K. A., & Fawole, O. A. (2022). Effects of chitosan coatings fused with medicinal plant extracts on postharvest quality and storage stability of purple passion fruit (Passiflora edulis var. Ester). Food Quality and Safety, 6, 1–19. https://doi.org/10.1093/fqsafe/fyac016

Nxumalo, K. A., Fawole, O. A., & Oluwafemi, O. S. (2022). Evaluating the efficacy of gum arabic-zinc oxide nanoparticles composite coating on shelf-life extension of mandarins (cv. Kinnow). Frontiers in Plant Science, 13, Article 953861. https://doi.org/10.3389/fpls.2022.953861

Ocampo, J., Rodríguez, A., & Parra. M. (2020). Gulupa: Passiflora edulis f. edulis Sims (pp. 139–157). In Rodríguez, A., F. G. Faleiro, M. Parra, & A. M. Costa (Eds.), Pasifloras – especies cultivadasen el mundo (1st ed.). ProImpress-Brasilia and Cepass.

Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147, 174–184. https://doi.org/10.1016/j.postharvbio.2018.09.021

Péneau, S., Hoehn, E., Roth, H. R., Escher, F., & Nuessli, J. (2006). Importance and consumer perception of freshness of apples. Food Quality and Preference, 17(1-2), 9–19. https://doi.org/10.1016/j.foodqual.2005.05.002

Pinzón, I. M., Fischer, G., & Corredor, G. (2007). Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims.). Agronomía Colombiana, 25(1), 83–95. https://revistas.unal.edu.co/index.php/agrocol/article/view/14408

Ramírez-Gil, J. G., Franco, G., & Henao-Rojas, J. C., (2019). Review of the concept of quality in Hass avocado and the pre-harvest and harvest factors that determine it under tropical conditions. Revista Colombiana de Ciencias Hortícolas, 13(3), 359–370. https://doi.org/10.17584/rcch.2019v13i3.10503

Reyes, A., Balaguera-López, H. E., & Castellanos, D. A. (2024). Effect of temperature, 1-methylcyclopropene, and modified atmosphere packaging on the postharvest behavior of lulo (Solanum quitoense Lam). Scientia Horticulturae, 329, Article 113012. https://doi.org/10.1016/j.scienta.2024.113012

Rincón Munar, N. (2020). Exportación de gulupa en 2020. Asociación Nacional de Comercio Exterior-Analdex. https://www.analdex.org/2021/02/25/exportacion-de-gulupa-en-2020/

Saba, A., Moneta, E., Peparaio, M., Sinesio, F., Vassallo, M., & Paoletti, F. (2018). Towards a multidimensional concept of vegetable freshness from the consumer’s perspective. Food Quality and Preference, 66, 1–12. https://doi.org/10.1016/j.foodqual.2017.12.008

Sadek, M. E., Shabana, Y. M., Sayed-Ahmed, K., & Abou Tabl, A. H. (2022). Antifungal activities of sulfur and copper nanoparticles against cucumber postharvest diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum. Journal of Fungi, 8(4), Article 412. https://doi.org/10.3390/jof8040412

Sane, P., Chaudhari, S., Nemade, P., & Sontakke, S. (2018). Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2. Journal of Environmental Chemical Engineering, 6, 68–73. https://doi.org/10.1016/j.jece.2017.11.060

Sun, S., Luo, C., & Chen, J. (2017). A review of natural language processing techniques for opinion mining systems. Information Fusion, 36, 10–25. https://doi.org/10.1016/j.inffus.2016.10.004

Taha, I. M., Zaghlool, A., Nasr, A., Nagib, A., El Azab, I. H., Mersal, G. A., Ibrahim, M. M., & Fahmy, A. (2022). Impact of starch coating embedded with silver nanoparticles on strawberry storage time. Polymers, 14(7), Article 1439. https://doi.org/10.3390/polym14071439

Tavakoli, S. A., Mirzaei, S., Rahimi, M., & Tavassolian, I. (2019). Assessment of peppermint, clove, cumin essential oils and silver nanoparticles on biochemical and shelf life of Citrus Limon (L.). Indian Journal of Biochemistry & Biophysics, 56, 269–275. https://core.ac.uk/download/pdf/229217852.pdf

Thammachote, N., Sripong, K., Uthairatanakij, A., Laohakunjit, N., Limmatvapirat, S., Ma, G., Zhang, L., Kato, M., & Jitareerat, P. (2023). Influence of silver nanoparticles on postharvest disease, pericarp hardening, and quality of mangosteen. Postharvest Biology and Technology, 204, Article 112470. https://doi.org/10.1016/j.postharvbio.2023.112470

Vuolo, M. M., Lima, G. C., & Maróstica Junior, M. R. (2019). Passiflora edulis peel flour and health effects. In V. P. Preedy, & R. Watson (Eds.), Flour and breads and their fortification in health and disease prevention (2nd ed., pp. 249–258). https://doi.org/10.1016/b978-0-12-814639-2.00020-4

Xin, M., Li, C., He, X., Li, L., Yi, P., Tang, Y., Li, J., Liu, G., Sheng, J., Sun, J. (2021). Integrated metabolomic and transcriptomic analyses of quality components and associated molecular regulation mechanisms during passion fruit ripening. Postharvest Biology and Technology, 180, Article 111601. https://doi.org/10.1016/j.postharvbio.2021.111601

Yahia, E.M., & Carrillo-López, A. (Eds.). (2018). Postharvest physiology and biochemistry of fruits and vegetables (1st ed.). Elsevier. https://doi.org/10.1016/C2016-0-04653-3

Zhou, Y., Zhong, Y., Li, L., Jiang, K., Gao, J., Zhong, K., Pan, M., & Yan, B. (2022). A multifuncional chitosan-derived conformal coating for the preservation of passion fruit. LWT-Food Science and Technology, 163, Article 113584. https://doi.org/10.1016/j.lwt.2022.113584

How to Cite

APA

Santos Suárez, E. D., Balaguera-López, H. E. and Ramirez Gil, J. G. (2024). Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis). Agronomía Colombiana, 42(3), e116582. https://doi.org/10.15446/agron.colomb.v42n3.116582

ACM

[1]
Santos Suárez, E.D., Balaguera-López, H.E. and Ramirez Gil, J.G. 2024. Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis). Agronomía Colombiana. 42, 3 (Sep. 2024), e116582. DOI:https://doi.org/10.15446/agron.colomb.v42n3.116582.

ACS

(1)
Santos Suárez, E. D.; Balaguera-López, H. E.; Ramirez Gil, J. G. Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis). Agron. Colomb. 2024, 42, e116582.

ABNT

SANTOS SUÁREZ, E. D.; BALAGUERA-LÓPEZ, H. E.; RAMIREZ GIL, J. G. Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis). Agronomía Colombiana, [S. l.], v. 42, n. 3, p. e116582, 2024. DOI: 10.15446/agron.colomb.v42n3.116582. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/116582. Acesso em: 7 apr. 2025.

Chicago

Santos Suárez, Emanuel David, Helber Enrique Balaguera-López, and Joaquin Guillermo Ramirez Gil. 2024. “Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis)”. Agronomía Colombiana 42 (3):e116582. https://doi.org/10.15446/agron.colomb.v42n3.116582.

Harvard

Santos Suárez, E. D., Balaguera-López, H. E. and Ramirez Gil, J. G. (2024) “Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis)”, Agronomía Colombiana, 42(3), p. e116582. doi: 10.15446/agron.colomb.v42n3.116582.

IEEE

[1]
E. D. Santos Suárez, H. E. Balaguera-López, and J. G. Ramirez Gil, “Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis)”, Agron. Colomb., vol. 42, no. 3, p. e116582, Sep. 2024.

MLA

Santos Suárez, E. D., H. E. Balaguera-López, and J. G. Ramirez Gil. “Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis)”. Agronomía Colombiana, vol. 42, no. 3, Sept. 2024, p. e116582, doi:10.15446/agron.colomb.v42n3.116582.

Turabian

Santos Suárez, Emanuel David, Helber Enrique Balaguera-López, and Joaquin Guillermo Ramirez Gil. “Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis)”. Agronomía Colombiana 42, no. 3 (September 1, 2024): e116582. Accessed April 7, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/116582.

Vancouver

1.
Santos Suárez ED, Balaguera-López HE, Ramirez Gil JG. Wax coating and Ag-TiO2 nanoparticles as alternatives to preserve postharvest quality of the purple passion fruit (Passiflora edulis f. edulis). Agron. Colomb. [Internet]. 2024 Sep. 1 [cited 2025 Apr. 7];42(3):e116582. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/116582

Download Citation