Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane
Evaluación de una cámara NIR para el monitoreo de productividad y efecto del nitrógeno en caña de azúcar
DOI:
https://doi.org/10.15446/agron.colomb.v35n1.60852Keywords:
Nitrogen, yield, near infrared, precision agriculture, vegetation index, RPAS (en)Nitrógeno, productividad, infrarrojo cercano, agricultura de precisión, índice de vegetación, RPAS (es)
Downloads
The main objective of the research carried out in the sugar productive sector in Colombia is to improve crop productivity of sugarcane. The rise of RPAS, together with the use of multispectral cameras, which allows for high spatial resolution images and spectral information outside the visible spectrum, has generated an alternative nondestructive technological approach to monitoring crop sugarcane that must be evaluated and adapted to the specific conditions of Colombia's sugar productive sector. In this context, this paper assesses the potential of a modified camera (NIR) to discriminate three varieties of sugarcane, as well as three doses of fertilization and estimating the sugarcane yield at an early stage, for the three varieties through multiple vegetation indices. In this study, no significant differences were found by vegetation index between fertilization doses, and only significant differences between varieties were found when the fertilization was normal or high. Likewise, multiple regressions between scores derived from vegetation indices after applying PCA and productivity produced determinations of up to 56%.
References
Abdel-Rahman, E. M., F. B. Ahmed, and M. van den Berg. 2010. Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 12S, S52-S57. Doi: 10.1016/j.jag.2009.11.003.
Aguiar, D.A., B.F. Theodor Rudorff, W.F. Silva, M. Adami, and M. Pupin Mello. 2011. Remote sensing images in support of environmental protocol: Monitoring the sugarcane harvest in Sao Paulo State, Brazil. Remote Sens. 3, 2682-2703. Doi: 10.3390/rs3122682.
Berger, A.G., D. Gaso, V.S. Ciganda, and A. Otero. 2013. Evaluation of the temporal dynamics of spectral indices and their relation-ship with biophysical variables on wheat for the purpose of yield estimation. 0039-0043. In: Anais XVI Simpósio Brasileiro de Sensoriamento Remoto (SBSR). Foz do Iguacu, Brazil.
Blackmer, T.M., J.S. Schepers, G.E. Varvel, and G. Meyer. 1996. Analysis of aerial photography for nitrogen stress within corn fields. Agron. J. 88, 729-733. Doi: 10.2134/agronj1996.00021962008800050008x.
Carbonell, J.A., R. Quintero, J. S. Torres, C.A. Osorio, C.H. Isaacs, and J.I. Victoria. 2011. Zonificación agroecológica para el cultivo de la caña de azúcar en el valle del río Cauca (cuarta aproximación). Principios metodológicos y aplicaciones. Servicio de Cooperación Técnica y Transferencia de Tecnología, Cenicaña. Cali, Colombia.
Duveiller, G., R. López-Lozano, and B. Baruth. 2013. Enhanced processing of 1-km spatial resolution Fapar time series for sugarcane yield forecasting and monitoring. Remote Sens. 5, 1091-1116. Doi: 10.3390/rs5031091.
Feng, W., X. Yao, Y. Zhu, Y.C. Tian, and W.X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 28, 394-404. Doi: 10.1016/j.eja.2007.11.005.
Fernandes, J.L., J. Vieira, and R.A. Camargo. 2011. Sugarcane yield estimates using time series analysis of spot vegetation images. Sci. Agric. 68(2), 139-146. Doi: 10.1590/S0103-90162011000200002.
Foster, A.J., V. Gopal Kakani, J. Ge, and J. Mosali. 2012. Discrimination of switchgrass cultivars and nitrogen treatments using pigment profiles and hyperspectral leaf reflectance data. Remote Sens. 4, 2576-2594. Doi: 10.3390/rs4092576.
Galvao, L.S., A.R. Formaggio, and D.A. Tisot. 2005. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ. 94, 523-534. Doi: 10.1016/j.rse.2004.11.012.
García, C.E., F.A. Herrera, and E. Erazo. 2014. Metodología básica para la generación de índices de vegetación mediante imágenes multiespectrales aerotransportadas aplicada en cultivos de caña de azúcar. In: Memorias XVI Simposio Internacional SELPER 2014. Sociedad Latinoamericana en Percepción Remota y Sistemas de Información Espacial. Medellin, Colombia.
Gopala Pillai, S. and L. Tian. 1999. In-field variability detection and spatial yield modeling for corn using digital aerial imaging. Trans. ASAE 42(6), 1911-1920. Doi: 10.13031/2013.13356.
Govender, M., K. Chetty, and H. Bulcock. 2007. A review of hyper-spectral remote sensing and its application in vegetation and water resource studies. Water SA 33(2), 145-152. Doi: 10.4314/wsa.v33i2.49049.
Hatfield, J.L., A.A. Gitelson, J.S. Schepers, and C.L. Walthall. 2008. Application of spectral remote sensing for agronomic decisions. Agron. J. 100, S-117 - S-131. Doi: 10.2134/agronj2006.0370c.
Hoyos-Villegas, V. and F.B. Fritschi. 2013. Relationships among vegetation indices derived from aerial photographs and soybean growth and yield. Crop Sci. 53, 2631-2642. Doi: 10.2135/cropsci2013.02.0126.
Hunt, E.R. Jr., P.C. Doraiswamy, J.E. McMurtrey, C.S.T. Daughtry, E.M. Perry, and B. Akhmedov. 2013. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 21, 103-112. Doi: 10.1016/j.jag.2012.07.020.
Johnson, R.M., R.P. Viator, J.C. Veremis, E.P.Jr. Richard, and P.V. Zimba. 2008. Discrimination of sugarcane varieties with pigment profiles and high resolution, hyperspectral leaf reflectance data. J. Am. Soc. Sugar Cane Technol. 28, 63-75.
Lelong, C.C.D., P. Burger, G. Jubelin, B. Roux, S. Labbé, and F. Baret. 2008. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 8(5), 3557-3585. Doi: 10.3390/s8053557.
Lofton, J., B.S. Tubana, Y. Kanke, J. Teboh, H. Viator, and M. Dalen. 2012. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors 12, 7529-7547. Doi: 10.3390/s120607529.
Morel, J., P. Todoroff, A. Bégué, A. Bury, J.F. Martiné, and M. Petit. 2014. Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on Reunion Island. Remote Sens. 6, 6620-6635. Doi: 10.3390/rs6076620.
Mulianga, B., A. Bégué, M. Simoes, and P. Todoroff. 2013. Forecasting regional sugarcane yield based on time integraland spatial aggregation of MODIS NDVI. Remote Sens. 5, 2184-2199. Doi: 10.3390/rs5052184.
Murillo, P.J. and J.A. Carbonell. 2012. Principios y aplicaciones de la percepción remota en el cultivo de la caña de azúcar en Colombia. Servicio de Cooperación Técnica y Transferencia de Tecnología, Cenicaña. Cali, Colombia.
Ponzoni, F.J., Y.E. Shimabukuro, and T.M. Kuplich. 2012. Sensoriamente remoto da vegetacáo. 2nd ed. Oficina de Textos, Sao Paulo, Brazil.
Schmidt, E.J., G. Narciso, P. Frost, and C. Gers. 2000. Application of remote sensing technology in the sa sugar industry review of recent research findings. Proc. S. Afr. Sug. Technol. Ass. 74, 192-200.
Tetracam. 2015. ADC Lite. Tetracam's lightweight ADC ideal for unmanned aircraft. In: Tetracam better science through advanced imaging, http://www.tetracam.com/Products-ADC_Lite.htm; consulted: May 2016.
Victoria, J.I., C.A. Viveros, F.A. Salazar, J.C. Ángel, A.E. Bustillo, U. Castro, J. López, and C.A. Moreno. 2013. Catálogo de variedades de caña de azúcar. 3rd ed. Servicio de Cooperación Técnica y Transferencia de Tecnología, Cenicaña. Cali, Colombia.
Vieira, M.A., A.R. Formaggio, C.D. Rennó, C. Atzberger, D.A. Aguiar, and M.P. Mello. 2012. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 123, 553-562. Doi: 10.1016/j.rse.2012.04.011.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Fatemeh Mousabeygi, Yousef Rezaei, Samira Akhavan. (2021). Assessment of maize water status using a consumer-grade camera and thermal imagery. Water Supply, 21(6), p.2543. https://doi.org/10.2166/ws.2020.270.
2. L. A. S. Cardoso, P. R. S. Farias, J. A. C. Soares, C. R. T. Caldeira, F. J. de Oliveira. (2024). Use of a UAV for statistical-spectral analysis of vegetation indices in sugarcane plants in the Eastern Amazon. International Journal of Environmental Science and Technology, 21(10), p.6947. https://doi.org/10.1007/s13762-024-05477-z.
3. Fatemeh Mousabeygi, Samira Akhavan, Yousef Rezaei. (2022). Assessment of consumer-grade camera-derived vegetation indices for monitoring nitrogen and leaf relative water content of maize. Spanish Journal of Agricultural Research, 20(1), p.e0203. https://doi.org/10.5424/sjar/2022201-17138.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2017 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.