Published

2018-09-01

Spectral and thermal response of Heliconia psittacorum species to induced water stress

Respuesta espectral y térmica de la especie Heliconia psittacorum ante estrés hídrico

DOI:

https://doi.org/10.15446/agron.colomb.v36n3.70379

Keywords:

thermal índices, spectral reflectance, water déficit, vegetation indices. (en)
indices térmicos, reflectancia espectral, déficit hídrico, indices de vegetacion. (es)

Downloads

Authors

  • David Revelo-Luna Corporación Universitaria Comfacauca - Grupo de Investigación en Sistemas Inteligentes (GISI)
  • Aldemar Reyes-Trujillo Universidad del Valle - Grupo de Óptica Cuántica
  • Miguel Peña-Varón Universidad del Valle - Instituto Cinara-GISAM

An important limitation in agricultural production is stress resulting from water deficit. Flower production and postharvest life both decrease in Heliconia psittacorum affected by water stress. Remote sensing provides tools for estimating the water status of plant species using spectral information in the visible and infrared range. This paper presents a study of reflectance in the 350-800 nm range and the response in the thermal infrared of leaf tissue under different irrigation regimes. For the measurement of reflectance, an OceanOptics® Micro-Spectrometer was used, while for the thermal infrared measurements, a FLIRE40® camera was used. Three irrigation regimes were established: T1: 100% field capacity (FC), T2: 50% FC, and T3: 10% FC. Significant differences were found between treatment T1 and treatments T2-T3 in the water stress index (CWSI) and stomatal conductance index (GI). The reflectance around 800 nm decreased for T2 and T3. Significant differences were obtained between T1 and T2-T3 in the maximum of the first derivative of the reflectance between 700 and 750 nm. It was found that, in the range 350-800 nm, the thermal indices were better indicators of the water status of the Heliconia species than the spectral indices.

Un limitante importante en la produccion agricola es el estrés por deficit hidrico. La produccion de flores y la vida de poscosecha disminuyen en Heliconias psittacorum afectadas por estres hidrico. El sensado remoto proporciona herramientas para la estimacion del estado hidrico de especies vegetales usando informacion espectral en el rango visible e infrarrojo. En este trabajo, se presenta el estudio de la reflectancia en el rango 350-800 nm, y la respuesta en el infrarrojo termico del tejido foliar en diferentes tratamientos de riego. Para la medida de reflectancia se uso un Micro-Spectrometer OceanOptics® y para las medidas en el infrarrojo termico se uso la cámara FLIRE40®. Se establecieron tres regimenes de riego: T1: Capacidad de Campo (CC) 100%, T2: CC 50%, y T3: CC 10%. Se encontraron diferencias significativas entre el tratamiento T1 y los tratamientos T2-T3 para el indice de estres hidrico (CWSI) y el indice de conductancia estomatica (GI). La reflectancia alrededor de 800 nm se disminuyo para T2 y T3. Se obtuvieron diferencias significativas entre T1 y T2-T3 en el maximo de la primera derivada de la reflectancia entre 700 y 750 nm. Se encontro que los indices termicos son mejores indicadores del estado hidrico de la especie Heliconia que los indices espectrales en el rango 350-800 nm.

References

Akinci, Ş. and D. Lösel. 2012. Plant water-stress response mechanisms. pp. 16-30. In: Mofizur (ed). Water stress. InTech, Rijeka, Croatia. Doi: 10.5772/29578

Bellvert, J., P. Zarco-Tejada, J. Girona, and E. Fereres. 2014. Mapping crop water stress index in a 'Pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 15, 361-376. Doi: 10.1007/s11119-013-9334-5

Bellvert, J ., J. Girona, J. Marsal, V. González-Dugo, E. Fereres, S. Ustin, and P. Zarco-Tejada. 2016. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and saturn peach orchards. Remote Sens. 8(1), 2-17. Doi: 10.3390/rs8010039

Corti, M., P. Gallina, D. Cavalli, and G. Cabassi. 2017. Hyperspectral imaging ofspinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. Biosyst. Eng. 158, 38-50. Doi: 10.1016/j.biosystemseng.2017.03.006

Dian, Y., Y. Le, S. Fang, Y. Xu, C. Yao, and G. Liu. 2016. Influence of spectral bandwidth and position on chlorophyll content retrieval at leaf and canopy levels. J. Indian Soc. Remote Sens. 44(4), 583-593. Doi: 10.1007/s12524-015-0537-2

Duan, T., S.C. Chapman, Y. Guo, and B. Zheng. 2017. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops. Res. 210, 71-80. Doi: 10.1016/j.fcr.2017.05.025

Egea, G., C. Padilla-Díaz, J. Martinez-Guanter, J. Fernández, and M. Pérez-Ruíz. 2017. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agric. Water Manag. 187, 210-221. Doi: 10.1016/j.agwat.2017.03.030

Elvanidi, A., N. Katsoulas, T. Bartzanas, K. Ferentinos, and C. Kittas. 2017. Crop water status assessment in controlled environment using crop reflectance and temperature measurements. Precis. Agric. 18, 332-349. Doi: 10.1007/s11119-016-9492-3

Etesami, H. and B. Jeong. 2018. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 147, 881-896. Doi: 10.1016/j.ecoenv.2017.09.063

Fan, D.X., Y.L. Huang, L.X. Song, D.F. Liu, G. Zhang, and B. Zhang. 2014. Prediction of chlorophyll a concentration using HJ-1 satellite imagery for Xiangxi Bay in Three Gorges Reservoir. Water Sci. Eng. 7(1), 70-80. Doi: 10.3882/j.issn.1674-2370.2014.01.008

Farifteh, J., R. Struthers, R. Swennen, and P. Coppin. 2013. Plant spectral and thermal response to water stress induced by regulated deficit irrigation. Int. J. Geosci. Geomat. 1(1), 17-22.

Fuentes, S., R. De Bei, P. Joanne, and S. Tyerman. 2012. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig. Sci. 30(6), 523-536. Doi: 10.1007/s00271-012-0375-8

Gamon, J.A., K.F. Huemmrich, R.S. Stone, and C.E. Tweedie. 2013. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt. Remote Sens. Environ. 129, 144-153. Doi: 10.1016/j.rse.2012.10.030

Ge, Y., G. Bai, V. Stoerger, and J. Schnable. 2016. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 127, 625-632. Doi: 10.1016/j.compag.2016.07.028

Genc, L., M. Inalpulat, U. Kizil, M. Mirik, S. Smith, and M. Mendes. 2013. Determination of water stress with spectral reflectance on sweet corn (Zea mays L.) using classification tree (CT) analysis. Zemdirbyste-Agriculture 100(1), 81-90. Doi: 10.13080/z-a.2013.100.011

Gómez-Bellot, M., P. Nortes, M. Sánchez-Blanco, and M. Ortuño. 2015. Sensitivity ofthermal imaging and infrared thermometry to detect water status changes in Euonymus japonica plants irrigated with saline reclaimed water. Biosyst. Eng. 133, 21-32. Doi: 10.1016/j.biosystemseng.2015.02.014

Jaramillo, D. 2002. Introducción a la ciencia del suelo. Universidad Nacional de Colombia, Facultad de Ciencias. Medellin, Colombia.

Jones, H. 1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 22, 1043-1055. Doi: 10.1046/j.1365-3040.1999.00468.x

Kögler, F. and D. Söffker. 2017. Water (stress) models and deficit irrigation: System-theoretical description and causality mapping. Ecol. Model. 361, 135-156. Doi: 10.1016/j.ecolmodel.2017.07.031

Leinonen, I. and H. Jones. 2004. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 55(401), 1423-1431. Doi: 10.1093/jxb/erh146

Li, X., X. Liu, M. Liu, C. Wang, and X. Xia. 2015. A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress. Int. J. Appl. Earth Obs. Geoinf. 36, 41-53. Doi: 10.1016/j.jag.2014.10.017

Lima, R., I. García-Tejero, T. Lopes, J. Costa, M. Vaz, V. Durán-Zuazo, M. Chaves, D. Glenn, and E. Campostrini. 2016. Linking thermal imaging to physiological indicators in Carica papaya L. under different watering regimes. Agric. Water Manag. 164(1), 148-157. Doi: 10.1016/j.agwat.2015.07.017

Lisar, S., R. Motafakkerazad, M. Hossain, and I. Rahman. 2012. Water stress in plants: Causes, effects and responses. pp. 1-12. In: Rahman, I. (ed.). Water stress. InTech, Rijeka, Croatia. Doi: 10.5772/39363

Liu, B., W. Shen, Y. Yue, R. Li, Q. Tong, and B. Zhang. 2016. Combining spatial and spectral information to estimate chlorophyll contents of crop leaves with a field imaging spec-troscopy system. Precis. Agric. 18(4), 491-506. Doi: 10.1007/s11119-016-9466-5

Madera, C., E. Peña, and J. Soto. 2014. Efecto de la concentración de metales pesados en la respuesta fisiológica y capacidad de acumulación de metales de tres especies vegetales tropicales empleadas en la fitorremediación de lixiviados provenientes de rellenos sanitarios. Ingeniería y Competitividad 16(2), 179-188. Doi: 10.25100/iyc.v16i2.3693

Mangus, D., A. Sharda, and N. Zhang. 2016. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Comput. Electron. Agric. 121, 149-159. Doi: 10.1016/j.compag.2015.12.007

Mielke, M., B. Schaffer, and A. Schilling. 2012. Evaluation of reflectance spectroscopy indices for estimation of chlorophyll content in leaves of a tropical tree species. Photosynthetica 50(3), 343-352. Doi: 10.1007/s11099-012-0038-2

Morgounov, A., N. Gummadov, S. Belen, Y. Kaya, M. Keser, and J. Mursalova. 2014. Association of digital photo parameters and NDVI with winter wheat grain yield in variable environments. Turk. J. Agric. For. 38(5), 624-632. Doi: 10.3906/tar-1312-90

Rud, R., Y. Cohen, V. Alchanatis, A. Levi, R. Brikman, C. Shenderey, B. Heuer, T. Markovitch, Z. Dar, C. Rosen, D. Mulla, and T. Nigon. 2014. Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precis. Agric. 15(3), 273-289. Doi: 10.1007/s11119-014-9351-z

Santesteban, L., S. Di Gennaro, A. Herrero-Langreo, C. Miranda, J. Royo, and A. Matese. 2017. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 183, 49-59. Doi: 10.1016/j.agwat.2016.08.026

Semenova, G., I. Fomina, and A. Ivanov. 2014. Combined effect of water deficit and salt stress on the structure of mesophyll cells in wheat seedlings. CellBio 3(1), 14-24. Doi: 10.4236/cellbio.2014.31002

Shimada, S., E. Funatsuka, M. Ooda, M. Takyu, T. Fujikawa, and H. Toyoda. 2012. Developing the monitoring method for plant water stress using spectral reflectance measurement. J. Arid Land Stud. 22(1), 251-254.

Sosa, F. 2013. Revisión bibliográfica: Cultivo del género heliconia. Cultiv. Tropic. 34(1), 24-32.

Steidle, A., D. Lopes, F. Pinto, and S. Zolnier. 2017. Vis/NIR spec-troscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves. Biosyst. Eng. 155, 124-133. Doi: 10.1016/j.biosystemseng.2016.12.008

Uiboupin, R., J. Laanemets, L. Sipelgas, L. Raag, I. Lips, and N. Buhhalko, 2012. Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) using remote sensing and in situ data. Oceanologia 54(3), 395-419. Doi: 10.5697/oc.54-3.395

Wójtowicz, M., A. Wójtowicz, and J. Piekarczyk. 2016. Application of remote sensing methods in agriculture. Commun. Biom. Crop Sci. 11(1), 31-50.

Yang, J., D. Zhang, and Y. Li. 2011. How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids. Beilstein J. Nanotechnol. 2, 653-658. Doi: 10.3762/bjnano.2.69

Yang, X., Y. Yu, and W. Fan. 2015. Chlorophyll content retrieval from hyperspectral remote sensing imagery. Environ. Monit. Assess. 187(7), 443-456. Doi: 10.1007/s10661-015-4682-4

Yuan, W., Y. Yu, Y. Yue, J. Wang, F. Zhang, and X. Dang. 2015. Use of infrared thermal imaging to diagnose health of Ammopiptanthus mongolicus in northwestern China. J. Forest. Res. 26(3), 605-012. Doi: 10.1007/s11676-015-0075-3.

How to Cite

APA

Revelo-Luna, D., Reyes-Trujillo, A. and Peña-Varón, M. (2018). Spectral and thermal response of Heliconia psittacorum species to induced water stress. Agronomía Colombiana, 36(3), 237–247. https://doi.org/10.15446/agron.colomb.v36n3.70379

ACM

[1]
Revelo-Luna, D., Reyes-Trujillo, A. and Peña-Varón, M. 2018. Spectral and thermal response of Heliconia psittacorum species to induced water stress. Agronomía Colombiana. 36, 3 (Sep. 2018), 237–247. DOI:https://doi.org/10.15446/agron.colomb.v36n3.70379.

ACS

(1)
Revelo-Luna, D.; Reyes-Trujillo, A.; Peña-Varón, M. Spectral and thermal response of Heliconia psittacorum species to induced water stress. Agron. Colomb. 2018, 36, 237-247.

ABNT

REVELO-LUNA, D.; REYES-TRUJILLO, A.; PEÑA-VARÓN, M. Spectral and thermal response of Heliconia psittacorum species to induced water stress. Agronomía Colombiana, [S. l.], v. 36, n. 3, p. 237–247, 2018. DOI: 10.15446/agron.colomb.v36n3.70379. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/70379. Acesso em: 10 jul. 2024.

Chicago

Revelo-Luna, David, Aldemar Reyes-Trujillo, and Miguel Peña-Varón. 2018. “Spectral and thermal response of Heliconia psittacorum species to induced water stress”. Agronomía Colombiana 36 (3):237-47. https://doi.org/10.15446/agron.colomb.v36n3.70379.

Harvard

Revelo-Luna, D., Reyes-Trujillo, A. and Peña-Varón, M. (2018) “Spectral and thermal response of Heliconia psittacorum species to induced water stress”, Agronomía Colombiana, 36(3), pp. 237–247. doi: 10.15446/agron.colomb.v36n3.70379.

IEEE

[1]
D. Revelo-Luna, A. Reyes-Trujillo, and M. Peña-Varón, “Spectral and thermal response of Heliconia psittacorum species to induced water stress”, Agron. Colomb., vol. 36, no. 3, pp. 237–247, Sep. 2018.

MLA

Revelo-Luna, D., A. Reyes-Trujillo, and M. Peña-Varón. “Spectral and thermal response of Heliconia psittacorum species to induced water stress”. Agronomía Colombiana, vol. 36, no. 3, Sept. 2018, pp. 237-4, doi:10.15446/agron.colomb.v36n3.70379.

Turabian

Revelo-Luna, David, Aldemar Reyes-Trujillo, and Miguel Peña-Varón. “Spectral and thermal response of Heliconia psittacorum species to induced water stress”. Agronomía Colombiana 36, no. 3 (September 1, 2018): 237–247. Accessed July 10, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/70379.

Vancouver

1.
Revelo-Luna D, Reyes-Trujillo A, Peña-Varón M. Spectral and thermal response of Heliconia psittacorum species to induced water stress. Agron. Colomb. [Internet]. 2018 Sep. 1 [cited 2024 Jul. 10];36(3):237-4. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/70379

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

554

Downloads

Download data is not yet available.