Published

2018-09-01

Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.)

Restauración de la fertilidad de plantas haploides derivadas de anteras en uchuva (Physalis peruviana L.)

DOI:

https://doi.org/10.15446/agron.colomb.v36n3.73108

Keywords:

colchicine, chloroplasts, chromosomes, mixoploidy (en)
colchicina, cloroplastos, cromosomas, mixoploidía (es)

Downloads

Authors

  • Francy Garcia-Arias Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) https://orcid.org/0000-0003-3112-9950
  • Erika Sánchez-Betancourt Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)
  • Victor Núñez Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)

The cape gooseberry (Physalis peruviana L.) is one of the most important Colombian exotic fruits. Chromosome doubling of anther-derived plants is a key factor in the application of double haploid technology for the genetic improvement of crops. In the present study, axillary buds from four haploid cape gooseberry genotypes were used to evaluate artificial chromosome doubling induced by colchicine and its effects on ploidy level and pollen fertility. Three concentrations of colchicine (5, 10 and 15 mM) and three exposure times (2, 4 and 6 h) were used to determine the best treatment for the generation of fertileB plants from axillary buds of haploid genotypes. The colchicine increased both the number of chromosomes, from 36 to 129, and the average chloroplasts in stomata guard cell, from 4.5 to 23.8. The optimal chromosome doubling of the haploids was obtained with the 5 mM colchicine solution and 2 h exposure time. This protocol produced chromosome doubling in over 60% of the regenerants of the four haploid genotypes, with a high level of fertility. Morphologically, the fertile mixoploid plants showed variation in the vegetative, flowering and fruit characteristics, as compared to the haploid plants.

La uchuva (Physalis peruviana L.) es una de las frutas exóticas de mayor importancia para Colombia. La duplicacion cromosómica de plantas derivadas de cultivo de anteras es un factor clave en la aplicacion de la tecnologia doble haploide para el mejoramiento genetico de los cultivos. En el presente estudio, se evaluo la duplicacion cromosomica artificial inducida por colchicina en yemas axilares de cuatro genotipos haploides de uchuva y su efecto en el nivel de ploidia y la fertilidad polinica. Se emplearon tres concentraciones de colchicina (5, 10, 15 mM) y tres tiempos de exposicion (2, 4 y 6 h) con el fin de determinar el mejor tratamiento para la generacion de plantas fertiles a partir de yemas axilares de genotipos haploides. La colchicina incremento el numero de cromosomas entre 34 hasta 129 y el promedio de cloroplastos por celulas guarda entre 4.5 hasta 23.8. El doblamiento cromosomico optimo de plantas haploides se obtuvo con la solucion de colchicina 5 mM por 2 h. Este protocolo produjo doblamiento cromosomico en 60% de las plantas regeneradas obtenidas en los cuatro genotipos haploides, presentando un alto nivel de fertilidad. Morfologicamente, las plantas mixoploides fertiles presentaron variacion en caracteristicas vegetativas, de floracion y en fruto, comparado con las plantas haploides.

References

Amiri, S., S. Kazemitabaar, G. Ranjbar, and M. Azadbakht. 2010. The effect of trifluralin and colchicine treatments on morphological characteristics of Jimsonweed (Datura stramonium L.). Trakia J. Sci. 8, 47-61.

Ari, E., T. Yildirim, N. Mutlu, S. Buyukalaca, U. Gokmen, and E. Akman. 2016. Comparison of different androgenesis protocols for doubled haploid plant production in ornamental pepper (Capsicum annuum L.). Turk. J. Biol. 40, 944-954. Doi: 10.3906/biy-1509-36

Baez, P., M. Riveros, and C. Lehnebach. 2002. Viability and longevity of pollen of Nothofagus species in south Chile. New Zeal. J. Bot. 40, 671-678. Doi: 10.1080/0028825X.2002.9512822

Burun, B. and U. Emiroğlu. 2008. A comparative study on colchicine application methods in obtaining doubled haploids of tobacco (Nicotiana tabacum L.). Turk. J. Biol. 32, 105-111.

Chauvin, J., C. Souchet, J. Dantec, and D. Ellisseche. 2003. Chromosome doubling of 2x Solanum species by oryzalin: Method development and comparison with spontaneous chromosome doubling in vitro. Plant Cell Tissue Organ Cult. 73, 65-73. Doi: 10.1023/A:1022663816052

Cheniclet, C., W.Y. Rong, M. Causse, N. Frangne, L. Bolling, J.P. Carde, and J.P. Renaudin. 2005. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol. 139, 1984-1994. Doi: 10.1104/pp.105.068767

Delgado-Paredes, G., C. Rojas-Idrogo, J. Chaname-Cespedes, E. Floh, and W. Handro. 2017. Development and agronomic evaluation of in vitro somaclonal variation in sweet potato plants from direct organogenesis in roots. Asian J. Agric. Res. 7, 39-48.

Diaz, D., D. Gonzalez, L. Rache, and J. Pacheco. 2008. Efecto citogenetico de la colchicina sobre yemas vegetativas de Physalis peruviana L. Prospect. Cientif. 4, 27-40.

Edwald, D., K. Ulrich, G. Naujoks, and M. Schroder. 2009. Induction of tetraploid poplar and black locust plants using colchicine: Chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tissue Organ Cult. 99, 353-357. Doi: 10.1007/s11240-009-9601-3

Franco, C.V. 2012. Efecto de la colchicina sobre el numero cromosomico, numero de cloroplastos y caracteristicas morfológicas del fruto en ecotipos de uchuva (Physalis peruviana L.) Colombia, Kenia y Peru. Trabajo de grado. Universidad Francisco de Paula Santander. San Jose de Cucuta, Colombia.

Grisales, N., O. Trillos, J. Cotes, and L. Orozco. 2010. Estudios de fertilidad de polen en accesiones de uchuva (Physalis peruviana L.). Rev. Fac. Ciencias Basicas 6, 42-51.

Kermani, M.J., V. Sarasan, A.V. Roberts, K. Yokoya, J. Wentworth, and V.K. Sieber. 2003. Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor. Appl. Genet. 107, 1195-1200. Doi: 10.1007/s00122-003-1374-1

Koornneef, M., J.A.M. Van Diepen, C.J. Hanhart, A.C.K. Waart, and L. Martinelli, 1989. Chromosomal instability in cell- and tissue cultures of tomato haploids and diploids. Euphytica 43, 179-186. Doi: 10.1007/BF00037911

Liberato, S., E. Sanchez-Betancourt, J. Arguelles, C. Gonzalez, V. Nunez, and L.S. Barrero. 2015. Cytogenetics of Physalis peruviana L., and Physalis floridana Rydb. genotypes with differential response to Fusarium oxysporum. Corpoica Cienc. Tecnol. Agropecu. 15, 51-61. Doi: 10.21930/rcta.vol15_num1_art:396

Ligarreto, G., M. Lobo, and A. Correa. 2005. Recursos geneticos del genero Physalis en Colombia. pp. 329-338. In: Fischer G., D.

Miranda, W. Piedrahita, and J. Romero (eds.). Avances en cultivo, poscosecha y exportacion de la uchuva Physalis peruviana L. en Colombia. Universidad Nacional de Colombia, Bogota.

Murashige, T. and R. Nakano. 1966. Tissue culture as a potential tool in obtaining polyploid plants. J. Hered. 57, 115. Doi: 10.1093/oxfordjournals.jhered.a107486

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x

Murovec, J. and B. Bohanec. 2012. Haploids and doubled haploids in plant breeding. pp. 87-106. In: Abdurakhmonov, I. (ed.). Plant Breeding. IntechOpen, Rijeka, Croatia, Doi: 10.5772/29982

Nattaporn, K. and T. Sompong. 2012. Effects of Colchicine on survival rate, morphological, physiological and cytological characters of Chang Daeng orchid (Rhynchostylis gigantean var. rubrum Sagarik) In Vitro. J. Agric. Technol. 8, 1451-1460.

Novakova, L., K. Kovacovicova, and T.Q. Dang-Nguyen. 2016. A Balance between nuclear and cytoplasmic volumes controls spindle length. PLoS One 1-11. Doi: 10.1371/journal.pone.0149535

Ojiewo, C., S. Agong, K. Murakami, and M. Masuda. 2006. Chromosome duplication and ploidy level determination in African nightshade Solanum villosum Miller. J. Hortic. Sci. Biotechnol. 81, 183 188. Doi: 10.1080/14620316.2006.11512048

Olmstead, R.G. 2013. Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: A comparison of continental and intercontinental diversification patterns. Bot. J. 80-102. Doi:10.1111/j.1095-8339.2012.01306.x

Patino, D., E. Garcia, E. Barrera, O. Quejada, H.D. Rodriguez, and I. Arroyave. 2014. Manual tecnico uchuva bajo buenas practicas agricolas. SENA, Medellin, Colombia.

Qin, X. and L. Rotino. 1995. Chloroplast number in guard cells as ploidy indicator of in vitro-grown androgenic pepper BF00051583

Rodriguez, N. and M. Bueno. 2006. Study of the cytogenetic diversity of Physalis peruviana L. (Solanaceae). Acta Biol. Colomb. 11, 75-85.

Sanchez, E. 2014. Nivel de ploidia de plantas de uchuva provenientes de cultivo de anteras. MSc thesis. Universidad Nacional de Colombia. Bogota.

Sari, N., K. Abak, and M. Pitrat. 1999. Comparison of ploidy level screening methods in watermelon: Citrullus lanatus (Thunb.) Matsum. and Nakai. Sci. Hortic. 82, 265-277. Doi: 10.1016/S0304-4238(99)00077-1

Segui-Simarro, J.M. and F. Nuez. 2008. Pathways to doubled haploidy: Chromosome doubling during androgenesis. Cytogenet. Genome Res. 120, 358-369. Doi: 10.1159/000121085

Shao, J., C. Chen, and X. Deng. 2003. In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tissue Organ Cult. 75, 241-246. Doi: 10.1023/A:1025871810813

Smykalova, I., M. Větrovcova, M. Klima, I. Machačkova, and M. Griga. 2006. Efficiency of microspore culture for doubled haploid production in the breeding project “Czech Winter Rape.” Czech J. Genet. Plant Breed. 42, 58-71. Doi: 10.17221/3655-CJGPB

Suescun, L., E. Sanchez, M. Gomez, F.L. Garcia-Arias, and V.M. Nunez Zarantes. 2011. Produccion de plantas genéticamente puras de Uchuva. Editorial Kimpres Ltda., Bogota.

Weber, S., F. Unker, and W. Friedt. 2005. Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breed. 124, 511-513. Doi: 10.1111/j.1439-0523.2005.01114.x

Wenzel, W. 1973. A cytological study of colchiploid cape gooseberry (Physalis peruviana L.). Agroplantae 5, 79-84.

Wu, S., J.Y. Tsai, S.P. Chang, D.L. Lin, S.S. Wang, S.N. Huang, and L.T. Ng. (2006). Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana. J. Ethnopharmacol. 108, 407-413. Doi: 10.1016/j.jep.2006.05.027

Zamani, I., E. Gouli-Vavdinoudi, G. Kovacs, I. Xynias, D. Roupakias, and B. Barnabas. 2003. Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids. Plant Breed. 122, 314-317. Doi: 10.1046/j.1439-0523.2003.00866.x

How to Cite

APA

Garcia-Arias, F., Sánchez-Betancourt, E. and Núñez, V. (2018). Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana, 36(3), 201–209. https://doi.org/10.15446/agron.colomb.v36n3.73108

ACM

[1]
Garcia-Arias, F., Sánchez-Betancourt, E. and Núñez, V. 2018. Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana. 36, 3 (Sep. 2018), 201–209. DOI:https://doi.org/10.15446/agron.colomb.v36n3.73108.

ACS

(1)
Garcia-Arias, F.; Sánchez-Betancourt, E.; Núñez, V. Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agron. Colomb. 2018, 36, 201-209.

ABNT

GARCIA-ARIAS, F.; SÁNCHEZ-BETANCOURT, E.; NÚÑEZ, V. Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana, [S. l.], v. 36, n. 3, p. 201–209, 2018. DOI: 10.15446/agron.colomb.v36n3.73108. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/73108. Acesso em: 5 aug. 2024.

Chicago

Garcia-Arias, Francy, Erika Sánchez-Betancourt, and Victor Núñez. 2018. “Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.)”. Agronomía Colombiana 36 (3):201-9. https://doi.org/10.15446/agron.colomb.v36n3.73108.

Harvard

Garcia-Arias, F., Sánchez-Betancourt, E. and Núñez, V. (2018) “Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.)”, Agronomía Colombiana, 36(3), pp. 201–209. doi: 10.15446/agron.colomb.v36n3.73108.

IEEE

[1]
F. Garcia-Arias, E. Sánchez-Betancourt, and V. Núñez, “Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.)”, Agron. Colomb., vol. 36, no. 3, pp. 201–209, Sep. 2018.

MLA

Garcia-Arias, F., E. Sánchez-Betancourt, and V. Núñez. “Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.)”. Agronomía Colombiana, vol. 36, no. 3, Sept. 2018, pp. 201-9, doi:10.15446/agron.colomb.v36n3.73108.

Turabian

Garcia-Arias, Francy, Erika Sánchez-Betancourt, and Victor Núñez. “Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.)”. Agronomía Colombiana 36, no. 3 (September 1, 2018): 201–209. Accessed August 5, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/73108.

Vancouver

1.
Garcia-Arias F, Sánchez-Betancourt E, Núñez V. Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agron. Colomb. [Internet]. 2018 Sep. 1 [cited 2024 Aug. 5];36(3):201-9. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/73108

Download Citation

CrossRef Cited-by

CrossRef citations8

1. Mariana Carvalho Chaves Figueiredo, Adriana Rodrigues Passos, Frederic Mendes Hughes, Keylla Souza dos Santos, Alismário Leite da Silva, Taliane Leila Soares. (2020). Reproductive biology of Physalis angulata L. (Solanaceae). Scientia Horticulturae, 267, p.109307. https://doi.org/10.1016/j.scienta.2020.109307.

2. Edgar García-Fortea, Ana García-Pérez, Esther Gimeno-Páez, Alfredo Sánchez-Gimeno, Santiago Vilanova, Jaime Prohens, David Pastor-Calle. (2020). A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant. Biology, 9(9), p.272. https://doi.org/10.3390/biology9090272.

3. Gerardo Mállap-Detquizán, Jegnes B. Meléndez-Mori, Eyner Huaman-Huaman, Nuri C. Vilca-Valqui, Manuel Oliva. (2022). Cultivo de anteras en Physalis peruviana L. estadios de microsporas, métodos de esterilización y medios de cultivo. Bioagro, 35(1), p.33. https://doi.org/10.51372/bioagro351.4.

4. Luz Stella Barrero, Erika P. Sanchez-Betancourt, Gina A. Garzón-Martinez, Francy L. García-Arias, Jaime A. Osorio-Guarin, Victor M. Nuñez-Zarantes, Felix E. Enciso-Rodríguez. (2024). Handbook of Goldenberry (Physalis Peruviana). , p.39. https://doi.org/10.1016/B978-0-443-15433-1.00004-2.

5. Behzad Ahmadi, Hamed Ebrahimzadeh. (2020). In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. Plant Cell Reports, 39(3), p.299. https://doi.org/10.1007/s00299-020-02509-z.

6. Chaitanya Ghalagi, Malavalli Rajashekar Namratha, Kavita Kotyal, Shiva Prakash, Basavaiah Mohan Raju. (2023). A novel visual marker to distinguish haploids from doubled haploids in rice (Oryza sativa, L) at early growth stages. Plant Methods, 19(1) https://doi.org/10.1186/s13007-023-01085-z.

7. E. A. Domblides, A. S. Ermolaev, S. N. Belov. (2021). Obtaining doubled haploids of Cucurbita pepo L.. Vegetable crops of Russia, (4), p.11. https://doi.org/10.18619/2072-9146-2021-4-11-26.

8. Jose M. Seguí-Simarro, Javier Belinchón Moreno, Marina Guillot Fernández, Ricardo Mir. (2021). Doubled Haploid Technology. Methods in Molecular Biology. 2287, p.41. https://doi.org/10.1007/978-1-0716-1315-3_3.

Dimensions

PlumX

Article abstract page views

552

Downloads

Download data is not yet available.