Published

2018-09-01

Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments

Morfofisiología del rábano (Raphanus sativus L.) bajo estrés salino y tratamientos con ácido ascórbico

DOI:

https://doi.org/10.15446/agron.colomb.v36n3.74149

Keywords:

abiotic stress, growth, photosynthesis, vegetable, crop (en)
estrés abiótico, crecimiento, fotosíntesis, hortaliza. (es)

Downloads

Authors

  • Ana Gabriela de Sousa Basílio Federal University of Paraiba
  • Leonardo Vieira de Sousa Federal University of Paraiba
  • Toshik Iarley da Silva Federal University of Vicosa
  • Joana Gomes de Moura Federal University of Paraiba
  • Anderson Carlos de Melo Gonçalves Federal University of Roraima
  • José Sebastião de Melo Filho Federal University of Paraiba
  • Ygor Henrique Leal Federal University of Paraiba
  • Thiago Jardelino Dias Federal of University Paraiba

The use of saline or low-quality water in agriculture is an alternative to increasing water demand, especially in arid or semi-arid regions. However, the use of water with high levels of salts causes disturbances in plants, which can lead to their death; thus, alternatives to mitigate these effects are relevant in current agriculture. Currently, antioxidants are used to mitigate the effects of salts in plants, and among them ascorbic acid has been frequently mentioned. Therefore, the aim of this study was to evaluate the effect of irrigation with saline water combined with applications of ascorbic acid on the development and photosynthetic activity of radish (Raphanus sativus L.) plants. This experiment was carried out in a greenhouse with a randomized block design, with the treatments distributed in a 5.5 incomplete factorial scheme, composed of five electrical conductivities of the irrigation water (ECw): 0.50, 1.30, 3.25, 5.20 and 6.00 dS m-1, and five ascorbic acid (AA) doses: 0.00, 0.29, 1.00, 1.71, and 2.00 mM. The evaluated variables were: shoot height, leaf number, tuberous root diameter, chlorophyll a, b and total content, chlorophyll a/b ratio, initial fluorescence, maximum fluorescence, variable fluorescence and quantum yield of photosystem II. The saline water influenced the analyzed variables in the radish crop regardless of the ascorbic acid application. The ascorbic acid was not efficient in attenuating the deleterious effect of salinity in the irrigation water on the development and fluorescence of the radish. However, it was observed that the concentration of 1.00 mM of ascorbic acid promoted an increase in chlorophyll a, b and total in the saltstressed radish plants.

El uso de aguas salinas en la agricultura surge como alternativa al aumento en la demanda de agua, principalmente en regiones aridas o semiaridas. Sin embargo, el uso de agua con alto contenido de sales causa disturbios en las plantas pudiendo llevar hasta la muerte de las mismas. Por esta razon, se buscan alternativas para atenuar tales efectos. Actualmente, los antioxidantes se utilizan para mitigar los efectos de las sales en las plantas; entre estos antioxidantes s el acido ascorbico ha sido frecuentemente mencionado. Basado en lo expuesto, este trabajo tuvo por objetivo evaluar el efecto del riego con aguas salinas combinado con la aplicacion de acido ascorbico, sobre el desarrollo y actividades fotosinteticas de plantas de rabano (Raphanus sativus L.). El experimento fue desarrollado en ambiente protegido en bloques al azar con esquema factorial incompleto 5.5, con cinco conductividades electricas del agua de riego (ECw: 0.50, 1.30, 3.25, 5.20 y 6.00 dS m-1) y cinco dosis de acido ascorbico (AA: 0.00, 0.29, 1.00, 1.71 y 2.00 mM). Las caracteristicas evaluadas fueron altura de plantas, numero de hojas, diametro de la raiz tuberosa, indice de clorofila a, b, y total, relacion de clorofila a/b, fluorescencia inicial, fluorescencia maxima, fluorescencia variable y rendimiento cuantico del fotosistema II. El uso de agua salina influencio todas las variables analizadas en el cultivo del rabano independiente de la utilizacion del acido ascorbico. El uso del acido ascorbico no fue eficiente como atenuante de los efectos de la salinidad del agua de riego sobre el desarrollo y la fluorescencia del cultivo del rabano. Sin embargo, se observo que la aplicacion del acido ascorbico en la dosis de hasta 1.00 mM promueve el aumento en los indices de clorofilas a, b y total del rabano sometido al estres salino.

References

Abbasi, M. and E. Fakhani. 2015. Role of salicylic acid and ascorbic acid in the alleviation of salinity stress in wheat (Triticum aestivum L.). JBES 6, 107-113.

Agami, R.A. 2014. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol. Plantarum 58(2), 341-347. Doi: 10.1007/s10535-014-0392-y

Alves, E.S., D.F. Lima, J.A.S. Barreto, D.P. Santos, and M.A.L. Santos. 2017. Determinação do coeficiente de cultivo para a cultura do rabanete através de lisimetria de drenagem. Irriga 22(1), 194-203. Doi: 10.15809/irriga.2017v22n1p194-203

Bacarin, M.A., A.R. Falqueto, C.L. Moraes, P. Marini, and T.R. Löwe. 2007. Crescimento e fotossíntese em plantas de rabanete sob estresse salino. Rev. Bras. Agroc. 13(4), 473-479.

Billah, M., M.M. Rohman, N. Hossain, and M.S. Uddin. 2017. Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. Afr. J. Agr. Res. 12(17), 1437-1446.

Bortoluzzi, A.L. and V.V.H. Alvarez. 1997. Pesquisa em casa de vegetação e em campo: matrizes experimentais. Departamento de Solo/CCA - UFV, Viçosa, Brazil.

Chaparzadeh, N. and E.H. Behboud. 2015. Evidence for enhancement of salinity induced oxidative damages by salicylic acid in radish (Raphanus sativus L.). J. Plant Physiol. Breed. 5, 23-33.

El-Bassiouny, H. and M.S. Sadak. 2015. Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta Biol. Colomb. 20(2), 209-222. Doi: 10.15446/abc.v20n2.43868

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. 2014. Sistema brasileiro de classificação de solo. 4 ed. Brazil.

Filgueira, F.A.R. 2008. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. 3 ed. UFV, Viçosa, Brazil.

Gao, Q. and L. Zhang. 2008. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J. Plant Physiol. 165, 138-148. Doi: 10.1016/j.jplph.2007.04.002

Jamil, M., K.J. Lee, J.M. Kim, H.S. Kim, and E.S. Rha. 2007. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci. Agricola 64(2), 111-118. Doi: 10.1590/S0103-90162007000200002

Jasim, A.H., W.M.A. Al Timmen, and A.S. Abid. 2016. Effect of salt stress on plant growth and free endogenous hormones of primed radish (Raphanus Sativus L.) seeds with salicylic acid. Int. J. Chem. Tech. Res. 9(6), 339-346.

Kasim, W.A., K.M. Saad-Allah, and M. Hamouda. 2016. Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus Sativus). Int. J. Agric. Biol. 18(3), p. 653-660. Doi: 10.17957/IJAB/15.0152

Khan, A., M.S.A. Ahmad, H.R. Athar, and M. Ashraf. 2006. Interactive effect of foliar applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at seedling stage. Pak. J. Bot. 38(5), 1407-1414.

Konrad, M.L.F., J.A.B. Silva, P.R. Furlani, and E.C. Machado. 2005. Trocas gasosas e fluorescência da clorofila em seis cultivares de cafeeiro sob estresse de alumínio. Bragantia 64(3), 339-347.

Kostopoulou, Z., I. Therios, E. Roumeliotis, A.K. Kanellis, and A. Molassiotis. 2015. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol. Biochem. 86, 155-165. Doi: 10.1016/j.plaphy.2014.11.021

Maia, J.M., S.L. Ferreira-Silva, E.L. Voigt, C.D. Macedo, L.F.A. Ponte, and J.A.G. Silveira. 2012. Atividade de enzimas antioxidantes e inibição do crescimento radicular de feijão caupi sob diferentes níveis de salinidade. Act. Bot. Brasilica 26(2), 342-349. Doi: 10.1590/S0102-33062012000200010

Medeiros, J.F. 1992. Qualidade da água de irrigação utilizada nas propriedades assistidas pelo "GAT" nos Estados do RN, PB, CE e avaliação da salinidade dos solos. 1992. MSc. thesis, Universidade Federal da Paraíba, Campina Grande, Brazil

Melo, G.M., M.R. Barbosa, A.L.F. Dias, L. Willadino, and T.R. Camara. 2014. Pré-condicionamento in vitro de plantas de cana-de-açúcar (Saccharum spp.) para tolerância ao estresse salino. Rev. Bras. Eng. Agric. Amb. 18, 27-33.

Nascimento, L.B., J.F. Medeiros, S.S.V. Alves, B.L.C. Lima, and J.L.A. Silva. 2015. Desenvolvimento inicial da cultura do pimentão influenciado pela salinidade da água de irrigação em dois tipos de solos. Agropec. Cient. Semi-Árido 11, 37-43.

Noda, H. and S.N. Noda. 2016. Agricultura familiar tradicional e conservação da sócio-biodiversidade amazônica. Interações 4(6), 55-66.

Oliveira, D.S., T.J. Dias, E.P. Oliveira, H.C. Santos, W.B. Magalhaes, B. F. Matos, L.M.C. Sousa, and J.S. Melo Filho. 2016. Growth and physiology of peanut (Arachis hypogaea L.) irrigated with Agron. Colomb. 36(3) 2018 saline water and biofertilizer application times. Afric. J. Agric.Res. 11(44), 4517-4524.

Prisco, J.T., E. Gomes Filho, and R.S. Miranda. 2017. Physiology and biochemistry of plants growing under salt stress. pp. 425-448. In: Gheyi, H.R., N.S. Dias, C.F. Lacerda, and E. Gomes Filho (eds.). Manejo da salinidade na agricultura: Estudos básicos e aplicados. INCTSal, Fortaleza, Brazil.

Putti, F.F., J.F. Silva Júnior, R. Ludwig, L.R.A. Gabriel Filho, C.P. Cremasco, and A.E. Klar. 2014. Avaliação da cultura do rabanete ao longo do ciclo submetido em diferentes níveis de salinidade. J. Agron. Sci. 3(2), p. 80-90.

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

Rodrigues, R.M., L.F. Cavalcante, A.G.L. Souto, H.R. Ghey, and F.O. Mesquita. 2017. Growth and regrowth of neem after cutting in saline-sodic soil treated with organics inputs. Rev. Caatinga 30, 116-124. Doi: 10.1590/1983-21252017v30n113rc

Siddiqui, M.H., S.A. Alamri, M.Y. Al-Khaishany, M.A. Al-Qutami, and H.M. Ali. 2018. Ascorbic acid application improves salinity stress tolerance in wheat. Chiang Mai J. Sci. 45(3), 1296-1306.

Silva, E.M., C.J.G.S. Lima, S.N. Duarte, F.S. Barbosa, and R. Maschio. 2013. Níveis de salinidade e manejo da fertirrigação sobre características da berinjela cultivada em ambiente protegido. Rev. Ciênc. Agron. 44, 150-158.

Silva, T.I., J.S. Melo Filho, A.C.M. Gonçalves, L.V. Sousa, J.G. Moura, T.J. Dias, J.C. Alvarez-Pizarro, W.E. Pereira, and R.M.N. Mendonça. 2018. Salicylic acid effect on Ocimum basilicum L. during growth in salt stress and its relationship between phytomass and gas exchange. J. Exp. Agric. Inter. 22(4), 1-10. Doi: 10.9734/JEAI/2018/40901

Silveira, J.A.G., S.L.F. Silva, E.N. Silva, and R.A. Viegas. 2010. Mecanismos biomoleculares envolvidos com a resistência ao estresse salino em plantas. pp. 166-185. In: Gheyi, H.R., N.S. Dias, and C.F. Lacerda (eds.). Manejo da salinidade na agricultura: estudos básicos e aplicados. INCTSal, Fortaleza, Brazil .

Taiz, L., E. Zeiger, I.A. M0ller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. Artmed, Porto Alegre, Brazil.

Venkatesh, J., C.P. Upadhyaya, J.W. Yu, A. Hemavathi, D.H. Kim, R.J. Strasser, and S.W. Park. 2012. Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance. Hort. Envir. Biotec. 53(4), 320-328. Doi: 10.1007/s13580-012-0035-1

Veras, M.L.M., J.S. Melo Filho, L.S. Alves, T.H.S. Irineu, and T.J. Dias. 2018. Growth and dry matter pitombeira seedlings under salinity levels and application of biofertilizer. Com. Scientia 8(3), 486-492. Doi: 10.14295/cs.v8i3.1881

Vidigal, S.M. and M.W. Pedrosa. 2007. Rabanete. pp. 661-664. In: Paula Júnior T.J., and M. Venzon. (eds.) 101 culturas - Manual de tecnologias agrícolas. EPAMIG, Belo Horizonte, Brazil.

How to Cite

APA

Basílio, A. G. de S., de Sousa, L. V., da Silva, T. I., de Moura, J. G., Gonçalves, A. C. de M., de Melo Filho, J. S., Leal, Y. H. and Dias, T. J. (2018). Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agronomía Colombiana, 36(3), 257–265. https://doi.org/10.15446/agron.colomb.v36n3.74149

ACM

[1]
Basílio, A.G. de S., de Sousa, L.V., da Silva, T.I., de Moura, J.G., Gonçalves, A.C. de M., de Melo Filho, J.S., Leal, Y.H. and Dias, T.J. 2018. Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agronomía Colombiana. 36, 3 (Sep. 2018), 257–265. DOI:https://doi.org/10.15446/agron.colomb.v36n3.74149.

ACS

(1)
Basílio, A. G. de S.; de Sousa, L. V.; da Silva, T. I.; de Moura, J. G.; Gonçalves, A. C. de M.; de Melo Filho, J. S.; Leal, Y. H.; Dias, T. J. Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agron. Colomb. 2018, 36, 257-265.

ABNT

BASÍLIO, A. G. de S.; DE SOUSA, L. V.; DA SILVA, T. I.; DE MOURA, J. G.; GONÇALVES, A. C. de M.; DE MELO FILHO, J. S.; LEAL, Y. H.; DIAS, T. J. Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agronomía Colombiana, [S. l.], v. 36, n. 3, p. 257–265, 2018. DOI: 10.15446/agron.colomb.v36n3.74149. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/74149. Acesso em: 28 mar. 2024.

Chicago

Basílio, Ana Gabriela de Sousa, Leonardo Vieira de Sousa, Toshik Iarley da Silva, Joana Gomes de Moura, Anderson Carlos de Melo Gonçalves, José Sebastião de Melo Filho, Ygor Henrique Leal, and Thiago Jardelino Dias. 2018. “Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments”. Agronomía Colombiana 36 (3):257-65. https://doi.org/10.15446/agron.colomb.v36n3.74149.

Harvard

Basílio, A. G. de S., de Sousa, L. V., da Silva, T. I., de Moura, J. G., Gonçalves, A. C. de M., de Melo Filho, J. S., Leal, Y. H. and Dias, T. J. (2018) “Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments”, Agronomía Colombiana, 36(3), pp. 257–265. doi: 10.15446/agron.colomb.v36n3.74149.

IEEE

[1]
A. G. de S. Basílio, “Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments”, Agron. Colomb., vol. 36, no. 3, pp. 257–265, Sep. 2018.

MLA

Basílio, A. G. de S., L. V. de Sousa, T. I. da Silva, J. G. de Moura, A. C. de M. Gonçalves, J. S. de Melo Filho, Y. H. Leal, and T. J. Dias. “Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments”. Agronomía Colombiana, vol. 36, no. 3, Sept. 2018, pp. 257-65, doi:10.15446/agron.colomb.v36n3.74149.

Turabian

Basílio, Ana Gabriela de Sousa, Leonardo Vieira de Sousa, Toshik Iarley da Silva, Joana Gomes de Moura, Anderson Carlos de Melo Gonçalves, José Sebastião de Melo Filho, Ygor Henrique Leal, and Thiago Jardelino Dias. “Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments”. Agronomía Colombiana 36, no. 3 (September 1, 2018): 257–265. Accessed March 28, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/74149.

Vancouver

1.
Basílio AG de S, de Sousa LV, da Silva TI, de Moura JG, Gonçalves AC de M, de Melo Filho JS, Leal YH, Dias TJ. Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agron. Colomb. [Internet]. 2018 Sep. 1 [cited 2024 Mar. 28];36(3):257-65. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/74149

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Ahlem Zrig, Abdelrahim H. A. Hassan, Shereen Magdy Korany, Emad A. Alsherif, Samy Selim, Ali El-Keblawy, Ahmed M. El-Sawah, Mohamed S. Sheteiwy, Zainul Abideen, Hamada AbdElgawad. (2023). Metabolic Profiling Analysis Uncovers the Role of Carbon Nanoparticles in Enhancing the Biological Activities of Amaranth in Optimal Salinity Conditions. Sustainability, 15(19), p.14650. https://doi.org/10.3390/su151914650.

2. Fernando F. Putti, Camila P. Cremasco, Josué F. Silva Junior, Luís R. A. Gabriel Filho. (2022). FUZZY MODELING OF SALINITY EFFECTS ON RADISH YIELD UNDER REUSE WATER IRRIGATION. Engenharia Agrícola, 42(1) https://doi.org/10.1590/1809-4430-eng.agric.v42n1e215144/2022.

3. Noreen Zahra, Abdul Wahid, Muhammad Bilal Hafeez, Irfana Lalarukh, Aaliya Batool, Muhammad Uzair, Mohamed A. El-Sheikh, Saleh Alansi, Prashant Kaushik. (2022). Effect of Salinity and Plant Growth Promoters on Secondary Metabolism and Growth of Milk Thistle Ecotypes. Life, 12(10), p.1530. https://doi.org/10.3390/life12101530.

4. Juliane Maciel Henschel, Vanessa de Azevedo Soares, Mateus Caldeira Figueiredo, Sabrina Kelly dos Santos, Thiago Jardelino Dias, Diego Silva Batista. (2022). Radish (Raphanus sativus L.) growth and gas exchange responses to exogenous ascorbic acid and irrigation levels. Vegetos, 36(2), p.566. https://doi.org/10.1007/s42535-022-00422-2.

Dimensions

PlumX

Article abstract page views

718

Downloads

Download data is not yet available.