Published

2021-01-01

The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies

La edad de las plantas de tomate afecta el desarrollo de las colonias de Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera)

DOI:

https://doi.org/10.15446/agron.colomb.v39n1.89301

Keywords:

aphids, curve of infestation, plant phenological stages, Solanum lycopersicum, trophic interactions (en)
áfidos, curva de infestación, estados fenológicos de la planta, Solanum lycopersicum, interacciones tróficas (es)

Downloads

Authors

We tested the hypothesis that the intensity and duration of Macrosiphum euphorbiae infestations in tomato depend on both the age (phenological stage) of the host plant and the initial number of aphids present in the colony. We compared the effects of three initial levels of infestation and two phenological stages of the plant (pre-flowering and flowering stages) on infestation curves. The position of the infestation peak over time was significantly affected by the plant phenological phase. Populations of M. euphorbiae reached the highest peak of abundance on plants infested at the pre-flowering stage compared to those subsequently infested. Within a phenological phase, the maximum abundance also varied according to the initial aphid density on the plant. The implications concerning the management of the pest in the field are briefly discussed

Se planteó la hipótesis que la intensidad y duración de las infestaciones de Macrosiphum euphorbiae en el tomate dependen simultáneamente de la edad (etapa fenológica) de la planta hospedera y del número inicial de áfidos de la colonia. Se compararon los efectos de tres niveles iniciales de infestación y dos fases fenológicas de la planta (fases de pre-floración y floración) sobre las curvas de infestación. La posición del pico de infestación a lo largo del tiempo estuvo afectada significativamente por la fase fenológica de la planta. Las poblaciones de M. euphobiae alcanzaron su máximo pico de abundancia en las plantas infestadas en la fase de pre-floración comparadas con las plantas infestadas en fases posteriores. Dentro de la fase fenológica, la máxima abundancia varió también de acuerdo con la densidad inicial de áfidos en la planta. Las implicaciones concernientes al manejo de la plaga en campo se discuten brevemente.

References

Alam, J., Nahar, K., Khatun, K., Rashid, H., & Ahmed, K. S. (2020). Impact assessment of different sowing dates on maize aphid, Rhopalosiphum madis infestation in Bangladesh. Sustainability in Food and Agriculture, 1(2), 99–105. https://doi.org/10.26480/sfna.02.2020.99.105

Barton, K. E., & Boege, K. (2017). Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecology Letters, 20(4), 403–411. https://doi.org/10.1111/ele.12744

Barton, K. E., & Koricheva, J. (2010). The ontogeny of plant defense and herbivory: characterizing general patterns using metaanalysis. The American Naturalist, 175(4), 481–493. https://doi.org/10.1086/650722

Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Duran Prieto, J., Fanti, P., Guerrieri, E., Iodice, L., Lingua, G., Lorito, M., Maffei, M. E., Massa, N., Ruocco, M., Sasso, R., & Trotta, V. (2013). Tomato below ground-above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Molecular Plant-Microbe Interactions, 26(10), 1249–1256. https://doi.org/10.1094/MPMI-02-13-0059-R

Boege, K., & Marquis, R. J. (2005). Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology and Evolution, 20(8), 441–448. https://doi.org/10.1016/j.tree.2005.05.001

Colella, T., Candido, V., Campanelli, G., Camele, I., & Battaglia, D. (2014). Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica, 42, 235–246. https://doi.org/10.1007/s12600-013-0356-3

Corbesier, L., Bernier, G., & Périlleux, C. (2002). C:N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant and Cell Physiology, 43(6), 684–688. https://doi.org/10.1093/pcp/pcf071

Gadgil, M., & Solbrig, O. T. (1972). The concept of r- and K-selection: evidence from wild flowers and some theoretical considerations. The American Naturalist, 106(947), 14–31. https://doi.org/10.1086/282748

Gaquerel, E., & Stitz, M. (2017) Insect resistance: an emerging molecular framework linking plant age and JA signaling. Molecular Plant, 10(4), 537–539. https://doi.org/10.1016/j.molp.2017.02.006

Karley, A. J., Douglas, A. E., & Parker, W. E. (2002). Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. Journal of Experimental Biology, 205, 3009–3018.

Kindlmann, P., Jarošík, V., & Dixon, A. F. G. (2007). Population dynamics. In H. F. van Emden, & R. Harrington (Eds.), Aphids as crop pests (pp. 311–329). CAB International. https://doi.org/10.1079/9780851998190.0311

Irwin, M. E., Kampmeier, G. E., & Weisser, W. W. (2007). Aphid movement: process and consequences. In H. F. van Emden, & R. Harrington (Eds.), Aphids as crop pests (pp. 153–186). CAB International. https://doi.org/10.1079/9780851998190.0153

John, F., Saeed, N. A., Nadeem, S., & Hamed, M. (2017). Integration of planting time and insecticide to manage aphid infestations in wheat for better crop productivity. Pakistan Journal of Zoology, 49(4), 1343–1351. https://doi.org/10.17582/journal.pjz/2017.49.4.1343.1351

Larocca, A., Fanti, P., Molinaro, A., Mattia, M. F., & Battaglia, D. (2011). Aphid performance on Vicia faba and two southern Italy Phaseolus vulgaris landraces. Bulletin of Insectology, 64(1), 101–106.

Ma, Z. S., & Bechinski, E. J. (2009). Life tables and demographic statistics of Russian wheat aphid (Hemiptera: Aphididae) reared at different temperatures and on different host plant growth stages. European Journal of Entomology, 106(2), 205–210. https://doi.org/10.14411/eje.2009.026

Mymko, D., & Avila‐Sakar, G. (2019) The influence of leaf ontogenetic stage and plant reproductive phenology on trichome density and constitutive resistance in six tomato varieties. Arthropod-Plant Interactions, 13, 797–803. https://doi.org/10.1007/s11829-019-09690-3

Müller, C. B., Williams, I. S., & Hardie, J. (2001). The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecological Entomology, 26(3), 330–340. https://doi.org/10.1046/j.1365-2311.2001.00321.x

Nalam, V., Louis, J., & Shah, J. (2019). Plant defense against aphids, the pest extraordinaire. Plant Science, 279, 96–107. https://doi.org/10.1016/j.plantsci.2018.04.027

Perring, T. M., Battaglia, D., Walling, L. L., Toma, I., & Fanti, P. (2018). Aphids: biology, ecology, and management. In W. Wakil, G. E. Brust, & T. M. Perring (Eds.), Sustainable management of arthropod pests of tomato (pp. 15–48). Academic Press. https://doi.org/10.1016/B978-0-12-802441-6.00002-4

Perring, T. M., Farrar, C. A., & Toscano, N. C. (1988). Relationships among tomato planting date, potato aphids (Homoptera: Aphididae) and natural enemies. Journal of Economic Entomology, 81(4), 1107–1112. https://doi.org/10.1093/jee/81.4.1107

Ponder, K. L., Pritchard, J., Harrington, R., & Bale, J. S. (2000). Difficulties in location and acceptance of phloem sap combined with reduced concentration of phloem amino acids explain lowered performance of the aphid Rhopalosiphum padi on nitrogen deficient barley (Hordeum vulgare) seedlings. Entomologia Experimentalis et Applicata, 97(2), 203–210. https://doi.org/10.1046/j.1570-7458.2000.00731.x

Powell, G., Tosh, C. R., & Hardie, J. (2006). Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annual Review of Entomology, 51(1), 309–330. https://doi.org/10.1146/annurev.ento.51.110104.151107

R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

Rivelli, A. R., Trotta, V., Toma, I., Fanti, P., & Battaglia, D. (2013). Relation between plant water status and Macrosiphum euphorbiae (Hemiptera: Aphididae) population dynamics on three cultivars of tomato. European Journal of Entomology, 110(4), 617–625. https://doi.org/10.14411/eje.2013.084

Wolfson, J. L., & Murdock, L. L. (1990). Growth of Manduca sexta on wounded tomato plants: role of induced proteinase inhibitors. Entomologia Experimentalis et Applicata, 54(3), 257–264. https://doi.org/10.1111/j.1570-7458.1990.tb01336.x

How to Cite

APA

Trotta, V., Toma, I., Forlano, P., Fanti, P., Durán Prieto, J. and Battaglia, D. (2021). The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies. Agronomía Colombiana, 39(1), 108–112. https://doi.org/10.15446/agron.colomb.v39n1.89301

ACM

[1]
Trotta, V., Toma, I., Forlano, P., Fanti, P., Durán Prieto, J. and Battaglia, D. 2021. The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies. Agronomía Colombiana. 39, 1 (Jan. 2021), 108–112. DOI:https://doi.org/10.15446/agron.colomb.v39n1.89301.

ACS

(1)
Trotta, V.; Toma, I.; Forlano, P.; Fanti, P.; Durán Prieto, J.; Battaglia, D. The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies. Agron. Colomb. 2021, 39, 108-112.

ABNT

TROTTA, V.; TOMA, I.; FORLANO, P.; FANTI, P.; DURÁN PRIETO, J.; BATTAGLIA, D. The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies. Agronomía Colombiana, [S. l.], v. 39, n. 1, p. 108–112, 2021. DOI: 10.15446/agron.colomb.v39n1.89301. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/89301. Acesso em: 14 jul. 2024.

Chicago

Trotta, Vincenzo, Irene Toma, Pierluigi Forlano, Paolo Fanti, Juliana Durán Prieto, and Donatella Battaglia. 2021. “The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies”. Agronomía Colombiana 39 (1):108-12. https://doi.org/10.15446/agron.colomb.v39n1.89301.

Harvard

Trotta, V., Toma, I., Forlano, P., Fanti, P., Durán Prieto, J. and Battaglia, D. (2021) “The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies”, Agronomía Colombiana, 39(1), pp. 108–112. doi: 10.15446/agron.colomb.v39n1.89301.

IEEE

[1]
V. Trotta, I. Toma, P. Forlano, P. Fanti, J. Durán Prieto, and D. Battaglia, “The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies”, Agron. Colomb., vol. 39, no. 1, pp. 108–112, Jan. 2021.

MLA

Trotta, V., I. Toma, P. Forlano, P. Fanti, J. Durán Prieto, and D. Battaglia. “The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies”. Agronomía Colombiana, vol. 39, no. 1, Jan. 2021, pp. 108-12, doi:10.15446/agron.colomb.v39n1.89301.

Turabian

Trotta, Vincenzo, Irene Toma, Pierluigi Forlano, Paolo Fanti, Juliana Durán Prieto, and Donatella Battaglia. “The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies”. Agronomía Colombiana 39, no. 1 (January 1, 2021): 108–112. Accessed July 14, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/89301.

Vancouver

1.
Trotta V, Toma I, Forlano P, Fanti P, Durán Prieto J, Battaglia D. The age of tomato plants affects the development of Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera) colonies. Agron. Colomb. [Internet]. 2021 Jan. 1 [cited 2024 Jul. 14];39(1):108-12. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/89301

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Henrik Skovgård, Frederick L. Stoddard. (2023). Reproductive potential of the black bean aphid (Aphis fabae Scop.) on a range of faba bean (Vicia faba L.) accessions. Legume Science, 5(4) https://doi.org/10.1002/leg3.199.

Dimensions

PlumX

Article abstract page views

371

Downloads

Download data is not yet available.