Publicado

2017-01-01

Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr.

Hydrocarbonoclastic bacteria of the genus Pseudomonas in Samanea saman (Jacq.) Merr. rhizosphere

DOI:

https://doi.org/10.15446/rev.colomb.biote.v19n1.57408

Palabras clave:

Contaminación, toxicidad, petróleo, Pseudomonas, acción hidrocarburoclástica (es)
contamination, toxicity, petroleum, Pseudomonas, hydrocarbonoclastic action (en)

Descargas

Autores/as

  • Juliana Coromoto Mayz Universidad de Oriente, Núcleo de Monagas, Campus "Juanico", Lab. de Rizobiología, Maturín, Estado Monagas, Venezuela
  • Lorna Victoria Manzi Universidad Central de Venezuela, Cátedra de Microbiología, Laboratorio de Microbiología, D.C., Venezuela.

El objetivo de esta investigación incluye el aislamiento, caracterización e identificación de las especies de Pseudomonas existentes en la rizosfera de una leguminosa presente (colonizadora o sobreviviente) en un suelo de sabana contaminado por un derrame de petróleo con el fin de explicar el apoyo al crecimiento de esta leguminosa a través de la reducción de la toxicidad del crudo derramado (efectos hidrocarburoclásticos) El sitio se encuentra a la  entrada del pueblo de Amana del Tamarindo, estado Monagas, Venezuela (9° 38' 52" N, 63° 7' 20'' E, 46 msnm). Se muestreó un área de 50 m2.  Según las descripciones, claves y comparación con las exsiccatae del herbario UOJ, la leguminosa colectada fue identificada como Samanea saman (Jacq.) Merr., la cual pertenece a la Familia Fabaceae. Los resultados de la caracterización bioquímica y la producción de los pigmentos piocianina y fluoresceína permitieron identificar diez aislados como P. fluorescens, 5 como P. putida y 5 como P. aeruginosa. Se recomienda la revegetación con S. saman del área contaminada.

The research goal includes isolation, characterization and identification of Pseudomonas species existing in the rhizosphere of a legume present (colonizing or survivor) in a savanna soil polluted by an oil spill, in order to explain the support of the growth of this leguminous plant through the reduction of the toxicity of spilled oil (hydrocarbonoclastic effects). The site is located at Amana del Tamarindo village entrance, Monagas State, Venezuela (9 ° 38' 52 "N, 63 ° 7' 20" E, 46 masl). An area of 50 m2 was sampled.  In concordance to the descriptions, keys, and comparison with the UOJ Herbarium exsiccatae, the legume collected was identified as Samanea saman (Jacq.) Merr., which belongs to the Fabaceae family. The results of the biochemical characterization and the production of pyocyanine and fluorescein pigments allowed identifying 10 isolates as P. fluorescens, 5 as P. putida and 5 as P. aeruginosa. Samanea saman is recommended for re-vegetation of the contaminated area. 

Referencias

Achuba F.I. 2006. The effect of sublethal concentrations of crude oil on the growth and metabolism of cowpea (Vigna unguiculata) seedlings. The Environmentalist. 26(1):17–20.

Adekunle O. 2012. Mechanisms of antimicrobial resistance in bacteria, general approach. Int. J. Pharm. Med. & Bio. Sc. 1(2):166-187.

Adenipekun C.O., Oyetunji O.J. & Kassim L.S. 2009. Screening of Abelmoschus esculentus L. Moench for tolerance to spent engine oil. J. Appl. Biosci. 20:1131-1137.

Agrawal T., Anil S., Kotasthane A. S., Kushwah R. 2015. Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. 3 Biotech. 5:45–60.

Arora N.K. 2015. Plant Microbes Symbiosis: Plant Facets. Springer, India. 381 p.

Baishya M. & Chandra M. 2015. Phytoremediation of crude oil using two local varieties of castor oil plant (Ricinus communis) of Assam. In. J. Pharm. Bio. Sci. 6(4): (B)1173-1182.

Benedek T., Máthé I., Salamon R., Rákos S., Pásztohy Z., Márialigeti K. & Szabolcs Lány S. 2012. Potential bacterial soil inoculant made up by Rhodococcus sp. and Pseudomonas sp. for remediation in situ of hydrocarbon – and heavy metal polluted soils. Studia UBB Chemia, 57(3):199 – 211.

Brenner, J.; Kreig; Stanley, T. 2005. Bergey's Manual of Systematic Bacteriology. The Probacteria, Part A. Introductory Essay, New York: Springer, p 27.

Bushnell L. D. & Hass H. F. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41(5):653-673.

Chibuike G. U. & Obiora S. C. 2014. Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int. J. Environ. Sci. 4(5):840-858.

Cuenca M. del S., Roca A., Molina-Santiago C., Duque E., Armengaud J., Gómez-Garcia M. R. & Ramos J. L 2016. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb. Biotechnol. 9(1):100-115.

Das N. & Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011:1-13.

De Oliveira G. B., Favarin L., Luchese R. H. & McIntosh D. 2015. Psychrotrophic bacteria in milk: How much do we really know?. Braz. J. Microbiol. 46(2):313–321.

Edwin-Wosu N. L. 2013. Phytoremediation (Series 5): Organic carbon, matter, phosphorus and nitrogen trajectories as indices of assessment in a macrophytic treatment of hydrocarbon degraded soil environment. Eur J Exp Biol, 3(3):11-17.

Eze C. N., Maduka J. N., Ogbonna J. C. & Eze E. A.. 2013. Effects of bonny light crude oil contamination on the germination, shoot growth and rhizobacterial flora of Vigna unguiculata and Arachis hypogea grown in sandy loam soil. Sci. Res. Essays. 8(2):99-107.

Fernández M., Conde S., Duque E. & Ramos J. L. 2013. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microbial. Biotech. 6:307-313.

Flemming H.C. & Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8(9):623-633.

Gofar N. 2013. Synergism of wild grass and hydrocarbonoclastic bacteria petroleum biodegradation. J. Trop. Soils. 18(2): 161-168.

Government of Canada (GC). 2015. Final Screening Assessment Report for Pseudomonas stutzeri ATCC 17587, Canada: Ministery of the Environment and Ministery of Health. 40 p.

Goswami D., Thakker J. N. & Dhandhukia P. C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agric. 2: 1127500.

Hassaine A. & Bordjiba O. 2015. Metabolic capacities of three strains of Pseudomonas aeruginosa to biodegrade crude oil. Adv. Environ. Biol. 9(18): 139-146.

Inckot R.C., Bona C., Souza L.A. de & Santos G.O. 2008. Anatomia das plântulas de Mimosa pilulifera (Leguminosae) crescendo em solo contaminado com petróleo e solo biorremediado. Rodriguésia 59(3): 513-524.

Janek T., Łukaszewicz M. & Krasowska A. 2013. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2, Colloids and Surfaces B: Biointerfaces. 110:379-386.

Kabir M., Zafar Iqbal M. & Shafiq M. 2012. Traffic density, climatic conditions and seasonal growth of Samanea saman (Jacq.) Merr. on different polluted roads of karachi city. Pak. J. Bot. 44(6):1881-1890.

Keller, R. 2004. Identification of tropical woody plants in the absence of flowers, a field guide, 2nd. Edition, Switzerland: Birkhäuser Verlag Basel, 294 p.

Khan J. A. & Abbas S. H. 2011. Isolation and characterization of micro-organism from oil contaminated sites. Adv. Appl. Sci. Res. 2(3):455-460.

Komolafe R. J., Akinola O. M. & Agbolade O. J. 2015. Effect of petrol and spent oil on the growth of Guinea Corn (Sorghum bicolor L.). Int. J. Plant Biol. 6(1):5883.

Kumar G. P., Desai S., Amalraj L. & Reddy G. 2015. Isolation of fluorescent Pseudomonas spp. from diverse agro-ecosystems of India and characterization of their PGPR traits. Bacteriol. J. 5 (1): 13-24.

Kumara M., Leon V., De Sisto Materano A., Ilzins O. A., Galindo-Castro I. & Fuenmayor S. L. 2006. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z. Naturforsch C. 61(3-4):203-212.

Lăzăroaie M.M. 2009. Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1 Cen. Eur. J. Biol. 4(4):469-481.

Leite G. G. F., Figueirôa J. V., Almeida T. C. M., Valões J. L., Marques W. F., Duarte M. D. D. C. & Gorlach-Lira K. 2016. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol. Progress. 32(2): 262–270.

Lorestani B., Kolahchi N., Ghasemi M. & Cheraghi M. 2014. Changes germination, growth and anatomy Vicia ervilia in response to light crude oil stress. J. Chem. Health Risks 4(1):45-52.

Maheshwari, D. K.; Dheeman, S.; Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem, Swizerland: Springer International Publ. p 159.

Mead G. C. & Adams B. W. 1977. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage Br. Poult. Sci. 18(6):661-670.

Mikkonen A., Kondo E., Lapp K., Wallenius K., Lindstom K., Hartikainem H. & Suominen L. 2011. Contaminant and plant derived changes en soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis. Geoderma 160(3-4):336-346.

Missouri Botanical Garden (MBG). 2016. Tropicos.org. 07 Feb 2016. Disponible en http://www.tropicos.org.

Moussa T. A. A., Mohamed M. S. & Samak N. 2014. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 31(4):867-880.

Narváez-Flores S., Gómez L. M., & Martínez M. M. 2008. , Selection of bacteria with hydrocarbon degrading capacity isolated from Colombian Caribbean sediments., Bol. Invest. Mar. Cost. 37:63-77.

Ogbulie T. E., Duru C. & Nwanebu F. C. 2015. Interaction effects of plants and indigenous micro-organisms on degradation of N-alkanes in crude oil contaminated agricultural soil. J. Ecosys. Ecograph. 5(2): 166-181.

Olanipekun O., Ogunbayo A. & Layokun S. 2012. Estimation of biomass energetic yield and maintenance energy of growth of Pseudomonas aeruginosa and Pseudomonas fluorescens on diesel oil. Int. J. Res. Chem. Environ. 2(1):206-209.

Osawaru M. E., Ogwu M. C. & Braimah L. 2013. Growth responses of two cultivated okra species (Abelmoschus caillei (A. Chev) Stevels and Abelmoschus esculentus (Linn.) Moench) in crude oil contaminated soil. Nigerian J. Basic Appl. Sci. 21(3):215-226.

Parra J. & Gámez A. 2012. Determinación de especies arbóreas a través de caracteres vegetativos en la Estación Experimental Caparo, estado Barinas, Venezuela. Revista Forestal Venezolana. 56(2):135-145.

Ramos J. L., Cuenca S., Molina-Santiago C., Segura A., Duque E., Gómez-García M. R., Udaondo Z. & Roca A. 2015. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol. Rev. 39(4):555-566.

Rasamiravaka T., Labtani Q., Pierre Duez P. & El Jaziri, M. 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Intern. 2015:1-17.

Rodríguez A. & Gámez A. 2010. Clave vegetativa para la identificación de árboles de la familia Fabaceae de la ciudad de Mérida, Venezuela. Pittieria 34: 89-111.

Saitou K., Furuhata K., Kawakami Y. & Fukuyama M. 2009. Biofilm formation abilities and disinfectant-resistance of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals. Biocontrol Sci. 14(2):65-68.

Sebastiani L.F., Scebba R. & Tognett R. 2004. Heavy metal accumulation and growth responses in popular clones Eridana (popular deltoids) and 1-214 (p. deltoids x euramariceana) exposed to industrial waste. Environ. Exp. Bot. 52(1):79-88.

Smith, R.; Casadiego, J.; Sanabria, M.; Yunes F. 1996. Clave para los árboles de los Llanos de Venezuela basada en características vegetativas, Venezuela: Sociedad Venezolana de Ciencias Naturales, 275 p.

Tanee F.B.G. & Albert E. 2015. Reconnaissance assessment of long-term effects of crude oil spill on soil chemical properties and plant composition at Kwawa, Ogoni, Nigeria. J. Environ. Sci. Technol. 8 (6):320-329.

Udeh N. U., Nwaogazie I. L. & Momoh Y., 2013. Bio-remediation of a crude oil contaminated soil using water hyacinth (Eichhornia crassipes). Adv Appl Sci Res, 4(2):362-369.

Uğur A., Ceylan Ö. & Aslım B. 2012. Characterization of Pseudomonas spp. from seawater of the southwest coast of Turkey. J. Biol. Environ. Sci. 6(16):15-23.

Weber F.J , Isken S. & de Bont J. A. 1994. Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiol. 140(8):2013–2017.

Windevoxhell R., Malaver N., Bastardo H., Subero N., Sánchez N. & Marcano L. 2009. Caracterización de la comunidad bacteriana de un ripio de perforación y aislamiento de un consorcio bacteriano con capacidad hidrocarburoclástica Rev Ingeniería UC. 16(2):14-19.

Xiao M., Sun S., Zhang Z., Wang J., Qiu L., Sun H., Song Z., Zhang B., Gao D., Zhang G. & Wu W. 2016. Analysis of bacterial diversity in two oil blocks from two low permeability reservoirs with high salinities. Sci. Rep. 6:19600 DOI: 10.1038/srep19600. 31 enero 2016 Disponible en http://www.nature.com/articles/srep19600

Cómo citar

APA

Mayz, J. C. y Manzi, L. V. (2017). Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr. Revista Colombiana de Biotecnología, 19(1), 29–37. https://doi.org/10.15446/rev.colomb.biote.v19n1.57408

ACM

[1]
Mayz, J.C. y Manzi, L.V. 2017. Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr. Revista Colombiana de Biotecnología. 19, 1 (ene. 2017), 29–37. DOI:https://doi.org/10.15446/rev.colomb.biote.v19n1.57408.

ACS

(1)
Mayz, J. C.; Manzi, L. V. Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr. Rev. colomb. biotecnol. 2017, 19, 29-37.

ABNT

MAYZ, J. C.; MANZI, L. V. Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr. Revista Colombiana de Biotecnología, [S. l.], v. 19, n. 1, p. 29–37, 2017. DOI: 10.15446/rev.colomb.biote.v19n1.57408. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408. Acesso em: 24 ene. 2025.

Chicago

Mayz, Juliana Coromoto, y Lorna Victoria Manzi. 2017. «) Merr». Revista Colombiana De Biotecnología 19 (1):29-37. https://doi.org/10.15446/rev.colomb.biote.v19n1.57408.

Harvard

Mayz, J. C. y Manzi, L. V. (2017) «) Merr»., Revista Colombiana de Biotecnología, 19(1), pp. 29–37. doi: 10.15446/rev.colomb.biote.v19n1.57408.

IEEE

[1]
J. C. Mayz y L. V. Manzi, «) Merr»., Rev. colomb. biotecnol., vol. 19, n.º 1, pp. 29–37, ene. 2017.

MLA

Mayz, J. C., y L. V. Manzi. «) Merr». Revista Colombiana de Biotecnología, vol. 19, n.º 1, enero de 2017, pp. 29-37, doi:10.15446/rev.colomb.biote.v19n1.57408.

Turabian

Mayz, Juliana Coromoto, y Lorna Victoria Manzi. «) Merr». Revista Colombiana de Biotecnología 19, no. 1 (enero 1, 2017): 29–37. Accedido enero 24, 2025. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408.

Vancouver

1.
Mayz JC, Manzi LV. Bacterias hidrocarburoclásticas del género Pseudomonas en la rizosfera de Samanea saman (Jacq.) Merr. Rev. colomb. biotecnol. [Internet]. 1 de enero de 2017 [citado 24 de enero de 2025];19(1):29-37. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/57408

Descargar cita

CrossRef Cited-by

CrossRef citations5

1. Kelly J. Aroca Molina, Sonia Jakeline Gutiérrez, Neyla Benítez-Campo, Adriana Correa. (2024). Genomic Differences Associated with Resistance and Virulence in Pseudomonas aeruginosa Isolates from Clinical and Environmental Sites. Microorganisms, 12(6), p.1116. https://doi.org/10.3390/microorganisms12061116.

2. Jose Allauca P, Carlos Lopez P, Jennyfer Daza, Joyce Chamba. (2024). Description of the primary Loreto-coca river contamination through the measurement of physicochemical parameters.. Bionatura Journal, 1(1), p.1. https://doi.org/10.70099/BJ/N2024.01.01.1.

3. José G. Chan-Quijano, Manuel J. Cach-Pérez, Ulises Rodríguez-Robles. (2020). Phytoremediation. Concepts and Strategies in Plant Sciences. , p.83. https://doi.org/10.1007/978-3-030-00099-8_3.

4. Jose Allauca P, Carlos Lopez P, Jennyfer Daza, Joyce Chamba. (2024). Description of the primary Loreto-coca river contamination through the measurement of physicochemical parameters. Bionatura Journal, 9(1), p.1. https://doi.org/10.21931/RB/2024.09.01.7.

5. Darío Cruz, Rodrigo Cisneros, Ángel Benítez, Wilson Zúñiga-Sarango, Jhoan Peña, Heriberto Fernández, Andrea Jaramillo. (2021). Gram-Negative Bacteria from Organic and Conventional Agriculture in the Hydrographic Basin of Loja: Quality or Pathogen Reservoir?. Agronomy, 11(11), p.2362. https://doi.org/10.3390/agronomy11112362.

Dimensions

PlumX

Visitas a la página del resumen del artículo

955

Descargas

Los datos de descargas todavía no están disponibles.