Efecto de ácidos húmicos sobre el crecimiento y la composición bioquímica de Arthrospira platensis (Cianobacteria)
Effect of humic acids on the growth and the biochemical composition of Arthrospira platensis
DOI:
https://doi.org/10.15446/rev.colomb.biote.v19n1.58316Palabras clave:
ácidos húmicos, ácido indol acético, Arthrospira platensis, pigmentos, solubilización. (es)biomass, indole acetic acid, cyanobacterium, pigments, solubilization (en)
Con el propósito de evaluar el efecto de tres concentraciones de ácidos húmicos (AH) 1, 10, 100 mg/L contra una concentración de ácido indol acético (AIA), sobre la producción de biomasa, pigmentos, proteínas, carbohidratos y lípidos de A. platensis; se realizaron cultivos en discontinuo en medio Zarrouk 25% suplementados con AH y AIA, bajo condiciones de aireación constante y fotoperiodos de 12:12 horas, durante 30 días. Se encontró que la producción máxima de biomasafue mayor en el cultivo suplementado con 10 mg/L de AH, comparado con el control y los cultivos suplementados con AIA. De la misma manera fue observado en este tratamiento la producción más alta de pigmentos, proteínas y carbohidratos. Por tanto, se logró incrementar el crecimiento y la producción de metabolitos de A. platensis, lo cual permite observar el uso potencial de estas sustancias como estimulantes biológicos orgánicos.
The purpose of this research was to evaluate the effect of three concentrations of humic acids (HA) 1, 10, 100 mg/L against a concentration of indole acetic acid (IAA) on production of biomass, pigments, proteins, carbohydrates and lipids of A. platensis. Cultures discontinuous in Zarrouk 25% medium supplemented with HA and IAA under conditions of aeration constant and photoperiod from 12:12 hours, during 30 days were made. It was found that the maximum biomass production was higher in the culture supplemented with 10 mg / L of AH, compared to the control and cultures supplemented with AIA. In the same way the highest production of pigments, proteins and carbohydrates were observed in this treatment. Therefore, the growth and production of metabolites of A. platensis was increased, which makes it possible to observe the potential use of these substances as organic biological stimulants.
Referencias
Andrade, M. & Costa, J. (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264 (1-4), 130-134.
Albalasmeh, A., Berhe, A. & Ghezzehei, T. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97 (2013), 253-261.
Arancon, N., Edwards, C., Lee, S. & Byrne, R. (2006). Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, 45, 65-69.
Bermúdez J., Rosales N., Loreto C., Briceño B. & Morales E. (2004). Exopolysaccharide, pigment and protein production by the marine microalga Chroomonas sp. in semicontinuous cultures. World Journal of Microbiology and Biotechnology, 20,179-183.
Bertilsson S. & Tranvik L. (2000). Photochemical transformation of dissolved organic matter in lakes. Limnology Oceanography, 45,753-762.
Cañizares, R. (2002). Biotecnología microalgal. Avances y Perspectivas, 21, 301-306.
Cacco, G., Attina, E., Gelsomino, A. & Sidari, M. (2000). Effect of nitrate and humic substances of different molecular size on kinetic parameters of nitrate uptake in wheat seedlings. Journal of Plant Nutrition and Soil Science, 163, 313-320.
Chaiklahan, R., Chirasuwan, N., Siangdung, W., Paithoonrangsarid, K. & Bunnag, B. (2010). Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. Journal of Microbiology and Biotechnology, 20(3), 609-614.
Christl, I., Knicker, H., Kogel I., & Kretzschmar R. (2000) Chemical heterogeneity of humic substances: Characterization of size fractions obtained by hollow-fibre ultrafiltration. European Journal of Soil Science, 51 (4), 617-25.
Chojnacka K. & Marquez F.J. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3(1), 21-34.
Cohen, Z. (2002). The Chemicals of Spirulina. En: Vonshak, A. Spirulina platensis (Arthrospira): cell-biology and biotechnology. Taylor y Francis (Eds). Lond. pp. 175-203.
Cubillos J., Valero N. & Melgarejo L. (2015). Assessment of a low rank coal inoculated with coal solubilizing bacteria as an organic amendment for a saline-sodic soil. Chemical and biological technologies in agriculture, 2, 21.
De Nobili, M., Baca, M. & Milani, N., (1995). Scanning electron microscopy of humic substances produced during cellulose decomposition. Chemistry and Ecology, 11, 55-66.
Dubois, M., Gilles, K., Hamilton, J., Rebers, P. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
Eliach, J., Bourges, G., Duré, L., Medina, M. & Lara, M. (2004). Incidencia de la agitación en el crecimiento microalgal en biorreactores. Reporte Técnico. Facultad de Ciencias Exactas, Ingeniería y Agricultura. Universidad Nacional de Rosario, Argentina. 1-15.
Estrada, J., Besco S. & Villar del Fresno A. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco, 56, 497-500.
Feng, D. & Wu, C. (2006). Culture of Spirulina platensis in human urine for biomass production and O2 evolution. Journal of Zhejiang University science B, 7 (1), 34-37.
Giannoulli, A., Stavros, K., Siavalas, G., Chatziapostolou, A., Christanis, K., Papazisimou, S., Papanicolaou, C. & Foscolos, A. (2009). Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. International Journal of Coal Geology, 477 (3-4), 383-393.
Gómez, L., Valero, N., De Brigard, R. (2012). Bacterias halotolerantes/alcalofilas asociadas a la cianobacteria Arthrospira platensis promueven crecimiento temprano de Sorgum bicolor. Agronomía Colombiana, 30 (1), 111-115.
Haynes, R., Mokolobate, M. (2001). Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved Nutrient Cycling in Agroecosystems, 59(1), 47-63.
Herbert, D., Phipps, P. & Straone, R. (1971). Automated chemical analysis. En: Norris, J.; Ribbons, D. (Eds). Methods in microbiology. Academic Press. 5, 209-344.
Ji, M., Cao, W. & Han, L. (1983). Studies on marine humic substances. 1. Isolation of humic substances from seawater with and effective adsorbant, GDX-102 adsorption resin. Chinese Journal of Oceanology and Limnology, 1, 200-209.
Jørgensen, N., Tranvik, L., Edling H., Granéli, W. & Lindell, M. (1998). Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake water. FEMS microbiology ecology. 25 (3), 217- 227.
Kieber, D. (2000). Photochemical production of biological substrates. En: S. J. de Mora, S.J.S. Demers and M. Vernet (Eds). The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, UK, p. 130-148.
Kosakowska, A., Marcin, N. & Janusz, P. (2007). Responses of the toxic cyanobacterium Microcystis aeruginosa to iron and humic substances. Plant Physiology Biochemistry Journal, 45, 365-370
Marsh, J. & Weinstein, D. (1966). Simple charring method for determination of lipids. The Journal of Lipid Research, 7, 574–576.
Mostafa, S. & Ali, L. (2009). Evaluation of humic substances on Spirulina platensis growth for preparation of fertilizers. 4th Conference on Recent Technologies in Agriculture. Agricultural Research Center, Giza, Egypt. Vol. 5, 918-933.
Munawer, M. & Mazharuddin, M. (2011). Production of carotenoids (antioxidants/ colourant) in Spirulina platensis in response to indole acetic acid (IAA). International Journal of Engineering Science and Technology, 3 (6), 4973-4979.
Nardi, S., Pizzeghello, D., Muscolo, A. & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology Biochemistry, 34, 1527-1536.
Ogbonda, K., Aminigo, R. & Abu, G. (2007). Influence of temperature and pH on biomasa production and protein biosíntesis in a putative Spirulina sp. Bioserource technology, 98 (11), 2207-2211.
Prakash, P., Dhanalakshmi, P. & Anusha, B. (2011). Effect of humic acid on Spirulina platensis production and analysis of nutrient contents. Recent research in science and technology, 3(1), 87-89.
Pasqualoto, L., Canellas, F., Lopes, A. L., Okorokova, F. & Rocha, A. (2009). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H-ATPase activity in maize’ roots. Plant Physiology, 130, 1951-1957.
Peña, E., Havel, J. & Patocka, J. (2005). Humic substances compounds of still unknown structure applications in agriculture, industry, environment and biomedicine. Journal of applied Biomedicine, 3, 13-24.
Perez, A., Consuelo, K. (2012). Recuperación de residuos líquidos industriales mediante Arthrospira Sp. y Chlorella Sp., a escala de laboratorio, para la obtención de agua de riego. Región Arica y Parinacota. Universidad Católica de Santa María, Chile. Recuperado de: http://dspace.concytec.gob.pe/bitstream/concytec/28/1/alejandro_pk.pdf
Pouneva, I. (2005). Effect of Humic substances on the growth of microalgal cultures. Russian Journal of Plant Physiology, 52 (3), 410-413.
Ramírez, L. & Olvera, R. (2006). Uso tradicional y actual de Spirulina (Arthrospira sp). Interciencia, 31(009), 657-663.
Raoof, B., Kaushika, B. & Prasanna, R. (2006). Formulation of a low-cost medium for mass production of Spirulina. Biomass and Bioenergy, 30, 537-542.
Ritchie, R. (2008). Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica. 46(1), 115-126.
Rodolfi, L., Chini, G., Bassi, N., Padovani, G., Biondi, N, Bonini, G. & Tredici, M. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100-112.
Sánchez, M., Bernal, J., Rozo, C., Rodríguez, I. (2003). Spirulina (Arthrospira): an endible microorganism. A review. Universitas Scientiarum, 8 (1), 56-65.
Sharif, M., Khattak, R., & Sarrir, M. (2002). Effect of different levels of lignitic coal derived HA on growth of maize plants. Communications in Soil Science and Plant Analysis, 33, 19-20
Siegel, A. (1971). Metal-organic interactions in the marine environment. En: S.D. Faust and J.V. Hunder (Eds). Organic compounds in aquatic environment. Marcel Dekker, p. 265-295.
Soltani, N, Khavari, R. & Tabatabaei, M. (2006). Variation of nitrogenase activity, photosynthesis and pigmentation of the cyanobacterium Fischerella ambigua strain FS18 under different irradance and pH values. World Journal Microbiology Biotechnology, 22, 571- 576.
Thurman, E., Weshaw, R., Malcolm, R. & Pickney, D., (1982). Molecular size of aquatic humic substances. Organic Geochemistry, 4, 27-35.
Ukeles, R. & Rose, W. (1976). Cultivation of plants. Methods of culture. Marine Biology, 37, 11-28.
Ungsethaphand, T., Peerapornpisal, Y. & Whangchai, N. (2009). Production of Spirulina platensis using dry chicken manure supplemented with urea and sodium bicarbonate. Maejo International Journal Science Technology, 3(03), 379-387.
Vázquez, R. & Arredondo, B. (1991). Haloadaptation of the green alga Botryococcus braunii (‘A’ Race). Phytochemistry, 30 (9), 2919-2925.
Volkmann, H., Imianovsky, U., Furlong, E., Barcelos, O. & Sant, E. (2007). Influence of desalinator wastewater for the cultivation of Arthrospira platensis. Fatty acids profile. Grasas y Aceites, 58(4), 396-401.
Vonshak, A. & Tomaselli, L. (2000). Arthrospira (Spirulina): Systematics and ecophysiology. En: The Ecology of Cyanobacteria. Kluwer Academic Publishers. pp. 505-522.
Vonshak, A. (2002). Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology. Taylor and Francis Publisher. London. 131-158 pp.
Vraná, D. & Votruba, J. (1995). Influence of soluble humic substances on the growth of algae and blue-green algae. Folia Microbiologica, 40 (2), 207-208.
Wiley, J. (1977). An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima. Biotechnology and Bioengineering, 19, 1219-1224.
Wyman, M. & Fay, P. (1986). Underwater light climate and the growth and pigmentation of planktonic bluegreen alge (Cyanobacteria). I. Influence of light quantity. Proceedings of the Royal Society of London. 227: 367-380.
Zarrouk, C. (1966). Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Ph.D. Thesis, Université de Paris, Paris.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Martha Lucia Ortiz-Moreno, Jaleydi Cárdenas-Poblador, Julián Agredo, Laura Vanessa Solarte-Murillo. (2020). Modeling the effects of light wavelength on the growth of Nostoc ellipsosporum. Universitas Scientiarum, 25(1), p.113. https://doi.org/10.11144/Javeriana.SC25-1.mte.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2017 Revista Colombiana de Biotecnología
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).