Publicado

2017-01-01

Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro

Evaluation of factors that affect bioacidulation rock phosphate under in vitro conditions

DOI:

https://doi.org/10.15446/rev.colomb.biote.v19n1.65968

Palabras clave:


solubilization, phosphorus, phosphate solubilizing microorganism (en)

Descargas

Autores/as

  • Laura Osorno Bedoya Universidad Nacional de Colombia sede Medellin
  • Nelson Walter Osorio Vega Universidad Nacional de Colombia, Calle 59A No. 63-20, 050034, Medellín

El fósforo (P) es un nutriente esencial para el desarrollo de las plantas, desafortunadamente, su disponibilidad en muchos suelos es baja. Consecuentemente, los agricultores aplican altas cantidades de fertilizantes fosfóricos solubles, pero esto es ineficiente y costoso. El uso directo de roca fosfórica (RP) es muy atractivo por su bajo costo; sin embargo, es poco soluble y de baja eficiencia agronómica. Para superar esta limitación, hay un creciente interés en el uso de microorganismos del suelo capaces de disolverla y mejorar su valor como fertilizante. El objetivo de este trabajo fue evaluar el efecto que tienen algunos factores sobre la capacidad del hongo Mortierella sp. para disolver RP bajo condiciones in vitro. Estos factores son: (i) tiempo de incubación, (ii) tipo de RP, (iii) concentración inicial de P soluble y (iv) adición de vitaminas y micronutrientes. Despues del periodo de incubación se midió P en solución y pH. Los resultados indican que producto de la biodisolución de RP la más alta concentración de P en solución se alcanzó al día 5. Por otro lado, la biodisolución de RP fue reducida por la adición de vitaminas y micronutrientes y por el incremento en la concentración inicial de P soluble en el medio. Aunque la disolución microbiana fue más efectiva con la RP de Carolina del Norte, las RP del Huila y Santander presentaron un buen nivel de disolución en un periodo de tiempo corto. La bioacidulación mejorara la efectividad agronómica de la RP para su uso directo o a través de un proceso biotecnológico previo.

Phosphorus (P) is an essential nutrient for plant development, unfortunately, its availability in many soils is low. Consequently, farmers apply high quantities of soluble P fertilizers, but this is an inefficient and costly practice. The direct use of rock phosphate (RP) is a highly attractive option because its low cost, but this material has low solubility and low agronomic efficiency. In order to overcome this limitation, there is a growing interest in the use of soil microorganisms capable of dissolving RP and improving its value as a P fertilizer. The objective of this study was to evaluate the effect of some factors on the effectiveness of the fungus Mortierella sp. to dissolve RP under in vitro conditions. These factors included: (i) incubation time, (ii) type of RP, (iii) initial concentration of soluble P, and (iv) addition of vitamins and micronutrients. After the incubation period, P and pH were measured in solution. The results indicated that as a consequence of the biodissolution of RP, the highest concentration of soluble P in the medium was reached on the day 5th. The biodissolution of RP was reduced by the addition of vitamins and micronutrients and by the increase in the initial concentration of soluble P. Although microbial dissolution was more effective with North Carolina RP, RPs from Huila and Santander showed a good level of dissolution in a short period of time. Bioacidulation will improve the agronomic effectiveness of RP for its direct use or through a previous biotechnological process.

Referencias

Alam, S., Khalil, S., Ayub, N., & Rashid, M. (2002). In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol, 4(4), 454-458.

Barroso, C. B., Pereira, G. T., & Nahas, E. (2006). Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with different carbon and nitrogen sources. Brazilian Journal of Microbiology, 37(4), 434-438.

Bhatti, T. M., & Yawar, W. (2010). Bacterial solubilization of phosphorus from phosphate rock containing sulfur-mud. Hydrometallurgy, 103(1), 54-59.

Bojinova, D., Velkova, R., & Ivanova, R. (2008). Solubilization of Morocco phosphorite by Aspergillus niger. Bioresource technology, 99(15), 7348-7353.

Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology, 34(1), 33-41.

Chien, S. H., & Hammond, L. L. (1978). A comparison of various laboratory methods for predicting the agronomic potential of phosphate rocks for direct application. Soil Science Society of America Journal, 42(6), 935-939.

Chien, S. H., & Menon, R. G. (1995). Factors affecting the agronomic effectiveness of phosphate rock for direct application. Nutrient cycling in Agroecosystems, 41(3), 227-234.

Clark, D. S., Ito, K., & Horitsu, H. (1966). Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnology and Bioengineering, 8(4), 465-471.

Collavino, M. M., Sansberro, P. A., Mroginski, L. A., & Aguilar, O. M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and fertility of soils, 46(7), 727-738.

Conpes 3577. (2009). Política nacional para la racionalización del componente de costos de producción asociado a los fertilizantes en el sector agropecuario. Consejo Nacional de Política Económica y Social República de Colombia Departamento Nacional de Planeación.

Cunningham, J. E., & Kuiack, C. (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Applied and Environmental Microbiology, 58(5), 1451-1458.

Dietz, K. J., Baier, M., & Krämer, U. (1999). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In Heavy metal stress in plants (pp. 73-97). Springer Berlin Heidelberg.

Doran, P. M. (1995). Bioprocess engineering principles. Academic press.

Goenadi, D. H., & Sugiarto, Y. (2000). Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Science Society of America Journal, 64(3), 927-932.

Grewal, H. S., & Kalra, K. L. (1995). Fungal production of citric acid. Biotechnology advances, 13(2), 209-234.

Gyaneshwar, P., Kumar, G. N., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 133-143). Springer Netherlands.

Hammond, L. L., & Day, D. P. (1992). Phosphate rock standardization and product quality. In Workshop on Phosphate Sources for Acid Soils in the Humid Tropics of Asia, Kuala Lumpur (Malaysia), 6-7 Nov 1990. Malaysian Society of Soil Science.

Ivanova, R., Bojinova, D., & Nedialkova, K. (2006). Rock phosphate solubilization by soil bacteria. Journal of the University of Chemical Technology and Metallurgy, 41(3), 297-302.

Jain, R., Saxena, J., & Sharma, V. (2012). Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth. Folia microbiologica, 57(6), 533-541.

Jayasinghearachchi, H. S., & Seneviratne, G. (2006). Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biology and Biochemistry, 38(2), 405-408.

Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63(4), 671-678.

Madigan, M., Martinko, J., & Parker, J. (2004). Brock Biología de los microorganismos. Décima edición. Pearson education S.A. Madrid.

Mattey, M., & Bowes, I. (1978). Citrate regulation of NADP+-specific isocitrate dehydrogenase of Aspergillus niger.

Max, B., Salgado, J. M., Rodríguez, N., Cortés, S., Converti, A., & Domínguez, J. M. (2010). Biotechnological production of citric acid. Brazilian Journal of Microbiology, 41(4), 862-875.

Msolla, M. M., Semoka, J. M. R., Szilas, C., & Borggaard, O. K. (2007). Crop (Maize) response to direct application of local phosphate rock on selected acid soils of Tanzania. Communications in soil science and plant analysis, 38(1-2), 93-106.

Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36.

Narsian, V., & Patel, H. H. (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 32(4), 559-565.

Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 12(6), 567-572.

Netik, A., Torres, N. V., Riol, J. M., & Kubicek, C. P. (1997). Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1326(2), 287-294.

Osorio, N.W. (2008). Effectiveness of microbial solubilization of phosphate in enhancing plant phosphate uptake in tropical soils and assessment of the mechanisms of solubilization. Thesis (Ph.D.) University of Hawaii at Manoa.

Osorio, N.W., & Pérez, J.C. (2000). Microbial solubilization of phosphates in soils. A review. En: Uso de microorganismos en la agricultura, materia orgánica mito o realidad memorias del X Congreso de la Sociedad Colombiana de la Ciencia del Suelo. 103-116.

Osorio, N. W., & Habte, M. (2001). Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Research and Management, 15(3), 263-274.

Osorio, N. W., & Habte, M. (2012). Phosphate desorption from the surface of soil mineral particles by a phosphate-solubilizing fungus. Biology and fertility of soils, 49(4), 481-486.

Osorio, N. W., & Habte, M. (2009). Strategies for utilizing arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms for enhanced phosphate uptake and growth of plants in the soils of the tropics. In Microbial Strategies for Crop Improvement (pp. 325-351). Springer Berlin Heidelberg.

Osorno, L., & Osorio, N. W. (2014). Effect of carbon and nitrogen source and concentration on rock phosphate dissolution induced by fungi. Journal of Applied Biotechnology, 2(2), 32.

Pramanik, P., Bhattacharya, S., Bhattacharyya, P., & Banik, P. (2009). Phosphorous solubilization from rock phosphate in presence of vermicomposts in Aqualfs. Geoderma, 152(1), 16-22.

Rajan, S. S. S., Watkinson, J. H., & Sinclair, A. G. (1996). Phosphate rocks for direct application to soils. Advances in agronomy, 57, 77-159.

Ramírez, C. A. (2005). Aislamiento y evaluación de rizobacterias con potencial biocontrolador y promotor de crecimiento en plantas en banano (Doctoral dissertation, Tesis de Maestría. Universidad Nacional de Colombia, Medellín. 169p).

Reddy, M. S., Kumar, S., Babita, K., & Reddy, M. S. (2002). Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresource Technology, 84(2), 187-189.

Relwani, L., Krishna, P., & Reddy, M. S. (2008). Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Current microbiology, 57(5), 401-406.

Restrepo-Franco, G. M., Marulanda-Moreno, S., de la Fe-Pérez, Y., Díaz-de la Osa, A., Lucia-Baldani, V., & Hernández-Rodríguez, A. (2015). Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. Revista Cenic Ciencias Biológicas, 46(1), 63-76.

Reyes, I., Baziramakenga, R., Bernier, L., & Antoun, H. (2001). Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biology and Biochemistry, 33(12), 1741-1747.

Sahu, S. N., & Jana, B. B. (2000). Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecological Engineering, 15(1), 27-39.

Schneider, K. D., Van Straaten, P., Orduña, D., Mira, R., Glasauer, S., Trevors, J., ... & Smith, P. S. (2010). Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. Journal of applied microbiology, 108(1), 366-374.

Scervino, J. M., Mesa, M. P., Della Mónica, I., Recchi, M., Moreno, N. S., & Godeas, A. (2010). Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and fertility of soils, 46(7), 755-763.

Sharan, A., & Darmwal, N. S. (2008). Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources. World Journal of Microbiology and Biotechnology, 24(12), 3087-3090.

Shrivastava, M., Bhujbal, B. M., & D'Souza, S. F. (2007). Agronomic efficiency of indian rock phosphates in acidic soils employing radiotracer a‐value technique. Communications in soil science and plant analysis, 38(3-4), 461-471.

Shu, P., & Johnson, M.J. (1948). Citric acid production by submerged fermentation with Aspergillus niger. Ind. Eng. Chem. 40, 1202–1205.

Singh, H., & Reddy, M. S. (2011). Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, 47(1), 30-34.

Smith, D. R., Moore Jr, P. A., & Miles, D. M. (2005). Soil extractable phosphorus changes with time after application of fertilizer: I. Litter from poultry-fed modified dietsa. Soil science, 170(7), 530-542.

Tallapragada, P., & Seshachala, U. (2012). Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turkish Journal of Biology, 36(1), 25-35.

Tao, G. C., Tian, S. J., Cai, M. Y., & Xie G. H. (2008). Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere. 18(4), 515–523.

Van Kauwenbergh, S. J. (2006). Fertilizer Mineral Resources of Africa, IFDC Publication R-16, IFDC – An International Center for Soil Fertility and Agricultural Development, Muscle Shoals, Alabama, 435 p.

Va Vassileva, M., Azcon, R., Barea, J. M., & Vassilev, N. (1998). Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. Journal of Biotechnology, 63(1), 67-72.

Vassileva, M., Azcon, R., Barea, J. M., & Vassilev, N. (2000). Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Process Biochemistry, 35(7), 693-697.

Vas Vassilev, N., & Vassileva, M. (2003). Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Applied Microbiology and Biotechnology, 61(5-6), 435-440.

Vassilev, N., & Vassileva, M. (2003). Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Applied Microbiology and Biotechnology, 61(5-6), 435-440.

Whitelaw, M. A. (1999). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Advances in Agronomy, 69, 99-151.

Xiao, C. Q., Chi, R. A., Huang, X. H., Zhang, W. X., Qiu, G. Z., & Wang, D. Z. (2008). Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecological Engineering, 33(2), 187-193.

Yusdar, H., Anuar, A. R., Hanafi, M. M., & Azizah, H. (2007). Analysis of phosphate rock dissolution determining factors using principal component analysis in some acid Indonesian soils. Communications in soil science and plant analysis, 38(1-2), 273-282.

Zapata, F., & Roy, R. N. (Eds.). (2007). Utilización de las rocas fosfóricas para una agricultura sostenible. FAO.

Cómo citar

APA

Osorno Bedoya, L. y Osorio Vega, N. W. (2017). Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro. Revista Colombiana de Biotecnología, 19(1), 53–62. https://doi.org/10.15446/rev.colomb.biote.v19n1.65968

ACM

[1]
Osorno Bedoya, L. y Osorio Vega, N.W. 2017. Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro. Revista Colombiana de Biotecnología. 19, 1 (ene. 2017), 53–62. DOI:https://doi.org/10.15446/rev.colomb.biote.v19n1.65968.

ACS

(1)
Osorno Bedoya, L.; Osorio Vega, N. W. Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro. Rev. colomb. biotecnol. 2017, 19, 53-62.

ABNT

OSORNO BEDOYA, L.; OSORIO VEGA, N. W. Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro. Revista Colombiana de Biotecnología, [S. l.], v. 19, n. 1, p. 53–62, 2017. DOI: 10.15446/rev.colomb.biote.v19n1.65968. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65968. Acesso em: 20 abr. 2024.

Chicago

Osorno Bedoya, Laura, y Nelson Walter Osorio Vega. 2017. «Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro». Revista Colombiana De Biotecnología 19 (1):53-62. https://doi.org/10.15446/rev.colomb.biote.v19n1.65968.

Harvard

Osorno Bedoya, L. y Osorio Vega, N. W. (2017) «Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro», Revista Colombiana de Biotecnología, 19(1), pp. 53–62. doi: 10.15446/rev.colomb.biote.v19n1.65968.

IEEE

[1]
L. Osorno Bedoya y N. W. Osorio Vega, «Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro», Rev. colomb. biotecnol., vol. 19, n.º 1, pp. 53–62, ene. 2017.

MLA

Osorno Bedoya, L., y N. W. Osorio Vega. «Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro». Revista Colombiana de Biotecnología, vol. 19, n.º 1, enero de 2017, pp. 53-62, doi:10.15446/rev.colomb.biote.v19n1.65968.

Turabian

Osorno Bedoya, Laura, y Nelson Walter Osorio Vega. «Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro». Revista Colombiana de Biotecnología 19, no. 1 (enero 1, 2017): 53–62. Accedido abril 20, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65968.

Vancouver

1.
Osorno Bedoya L, Osorio Vega NW. Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro. Rev. colomb. biotecnol. [Internet]. 1 de enero de 2017 [citado 20 de abril de 2024];19(1):53-62. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65968

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Josaly Moreno, Beatriz Barraza Amador, Laura Osorno Bedoya, Nelson Walter Osorio Vega, Ana Medina Buelvas. (2023). Efecto de la inoculación con microorganismos promotores del crecimiento vegetal en suelos degradados de minería aluvial. Acta Agronómica, 71(2), p.148. https://doi.org/10.15446/acag.v71n2.92382.

Dimensions

PlumX

Visitas a la página del resumen del artículo

506

Descargas

Los datos de descargas todavía no están disponibles.