Publicado

2018-07-01

Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate

Resaltando el proceso de digestión anaeróbica en áreas rurales: obtención de estruvita a partir del digerido de estiércol bovino

Destacando o processo de digestão anaeróbica em áreas rurais: obtenção de estruvita a partir do digerido de esterco bovino.

DOI:

https://doi.org/10.15446/rev.colomb.biote.v20n2.71184

Palabras clave:

Biodigester, struvite crystals, digested matter, bovine manure, infrared radiation (en)
Biodigestor, estruvita, digerido, estiércol bovino, radiación infrarroja (es)
Biodigestor, cristais de estruvita, matéria digerida, esterco bovino, radiação infra-vermelha (pt)

Autores/as

  • Liliana Del Pilar Castro UNIVERSIDAD INDUSTRIAL DE SANTANDER
  • Kenia Paola Vecino-Gutierrez Universidad Industrial de Santander
  • Luisa Jasbleidy Díaz-Moyano Universidad Industrial de Santander
  • Jaime Jaimes-Estévez Universidad Industrial de Santander
  • Humberto Escalante-Hernández Universidad Industrial de Santander

The objective of this research was to obtain struvite from digested matter from a bio rural digester fed with bovine manure. To determine operating variables to recover struvite (PO43- and NH4+ ions), researchers developed an experiment design in which they evaluated the combined effect of the Mg2+: PO43- molar ratio (1.5:1; 2.5:1 and 3.5:1), reaction time (10, 50 and 90 min) and stirring speed (100, 450 and 800 rpm). The recovery rates obtained were 55±4.94 % and 58±7.72 % for NH4+ and PO43- respectively. The favorable conditions were 1.5 molar ratio, 50 minute reaction time and 450 rpm stirring speed. Struvite crystal formation and composition were confirmed using petrographic microscopy and infrared radiation. Struvite yield was 295.75 mg /l from digestate employed.

El objetivo de esta investigación fue obtener estruvita a partir del digerido de un biodigestor rural, alimentado con estiércol bovino. Con el fin de determinar las variables de operación para recuperar estruvita (iones PO43- y NH4+ ), se desarrolló un diseño de experimentos, en el cual se evaluó el efecto combinado de la relación molar de Mg2+:PO43- (1.5:1, 2.5:1 y 3.5:1), tiempo de reacción (10, 50 y 90 min) y velocidad de agitación (100, 450 y 800 rpm). Las condiciones determinadas como favorables fueron relación molar 1.5, tiempo de reacción 50 min y una velocidad de agitación de 450 rpm. Los porcentajes de recuperación obtenidos fueron  55 ± 4.94 % y 58 ± 7.72 % para NH4+ y PO43- respectivamente. La formación y composición de cristales de estruvita se confirmó mediante microscopia petrografía, microscopía electrónica de barrido (SEM) y radiación infrarroja. El rendimiento de estruvita obteniendo fue 295.75 mg /l de digerido utilizado.
O intuito desta investigação foi obter estruvita partindo do digerido de um biodigestor rural, alimentado com esterco bovino. A fim de determinar as variáveis de operação para recuperar a estruvita (íons PO43- e NH4+), foi desenvolvido um delineamento experimental, no qual foi avaliado o efeito combinado da razão molar de Mg2+: PO43- (1.5:1, 2.5:1 e 3.5: 1), tempo de reação (10, 50 e 90 min) e a velocidade de agitação (100, 450 e 800 rpm). A combinação de condições determinadas como favoráveis foram: relação molar de 1.5, tempo de reação de 50 minutos e velocidade de agitação de 450 rpm. As porcentagens de recuperação obtidas foram de 55 ± 4.94% e 58 ± 7.72% para NH4+ e PO43- respectivamente. A formação e composição de cristais de estruvita foram confirmadas por meio de microscopia de petrografia, microscopia eletrônica de varredura (SEM) e radiação infravermelha. O rendimento da estruvita obtida foi de 295.75 mg / l de digerido utilizado.

Referencias

Abdollahzadeh, E., Ojagh, S. M., Hosseini, H., Irajian, G., & Ghaemi, E. A. (2016). Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran. LWT - Food Science and Technology, 73, 205–211.

Angmo, K., Kumari, A., & Chand, T. (2016). Food bioscience antagonistic activities of lactic acid bacteria from fermented foods and beverage of Ladakh against Yersinia enterocolitica in refrigerated meat. Food Bioscience, 13, 26–31.

Asurmendi, P., García, M. J., Pascual, L., & Barberis, L. (2015). Biocontrol of Listeria monocytogenes by lactic acid bacteria isolated from brewer â€TM s grains used as feedstuff in Argentina. Journal of Stored Products Research, 61, 27–31.

Augustin, J. C., Zuliani, V., Cornu, M., & Guillier, L. (2005). Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions. Journal of Applied Microbiology, 99(5), 1019-1042

Campagnollo, F. B., Margalho, L. P., Kamimura, B. A., Feliciano, M. D., Freire, L., Lopes, L. S., Sant, A. S. (2018). Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses, 73, 288–297.

Concha-Meyer, A., Schöbitz, R., Brito, C., & Fuentes, R. (2011). Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control, 22(3–4), 485–489.

D’Ostuni, V., Tristezza, M., De Giorgi, M. G., Rampino, P., Grieco, F., & Perrotta, C. (2016). Occurrence of Listeria monocytogenes and Salmonella spp. in meat processed products from industrial plants in Southern Italy. Food Control, 62, 104–109.

Del Pilar Crespo, M., Vélez, J. D., Castañeda, C., Hoyos, F., López, M. L., & Salazar, J. C. (1999). Aislamiento de Listeria monocytogenes en un hospital de tercer nivel. Colombia Médica, 30(2), 89–98.

Dubourg, G., Elsawi, Z., & Raoult, D. (2015). Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics. International Journal of Antimicrobial Agents, 46, 590–593.

Galan, S. R., Fakult, R., Lehrstuhl, B., Michl, P., & Garei, B. (2006). Listeria monocytogenes. Zeitschrift Fur Gastroenterologie, 49, 2008–2008.

Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117.

Giello, M., Storia, A. La, Filippis, F. De, Ercolini, D., & Villani, F. (2018). Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiology, 72, 1–15.

Jay, J. M., Loessner, M. J., & Golden, D. a. (2005). Modern Food Microbiology. Estados Unidos, San Marcos, California: Editorial Board.

Kozak, S. M., Brown, S. R. B., Bobak, Y., & D’Amico, D. J. (2017). Control of Listeria monocytogenes in whole milk using antimicrobials applied individually and in combination. Journal of Dairy Science, 1–12.

Lu, M., & Wang, N. S. (2017). Chapter 7 - Spoilage of Milk and Dairy Products BT-The Microbiological Quality of Food. In Woodhead Publishing Series in Food Science, Technology and Nutrition (pp. 151–178). Woodhead Publishing.

Malheiros, P. S., Cuccovia, I. M., & Franco, B. D. G. M. (2016). Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a. Food Control, 63, 158–164.

Martin, A. (2002). Capacidad antagonista frente a Listeria monocytogenes de dos sustancias tipo bacteriocina utilizadas en combinación con NaCl y CO2 (Doctoral dissertation, Tesis para optar el grado de Licenciado en Ingeniria de alimentos. Universidad Austral De Chile Facultad De Ciencias Agrarias Escuela De Ingeniería En Alimentos. Valdivia, Chile).

Motato, K. E., Milani, C., Ventura, M., Valencia, F. E., Ruas-Madiedo, P., & Delgado, S. (2017). Bacterial diversity of the Colombian fermented milk “Suero Costeño” assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiology, 68, 129–136.

Motato, K. E., Quiceno, E., García, J., Ruas Madiedo, P., & Valencia García, F. E. (2016). Actividad antagónica de cepas aisladas de suero costeño frente a bacterias patógenas encontradas en alimentos. Vitae (01214004), 23, S190-S191.

Muñoz, A. M., Vargas M., Otero, L., Díaz, G., & Guzmán, V. (2011). Presencia de Listeria monocytogenes en alimentos listos para el consumo, procedentes de plazas de mercado y delicatessen de supermercados de cadena, Bogotá, D.C, 2002-2008. Biomédica, 428–439.

Sakaridis, I., Soultos, N., Dovas, C. I., Papavergou, E., Ambrosiadis, I., & Koidis, P. (2012). Anaerobe Lactic acid bacteria from chicken carcasses with inhibitory activity against Salmonella spp. and Listeria monocytogenes. Anaerobe, 18(1), 62–66.

Sip, A., Wieckowicz, M., Olejnik-Schmidt, A., & Grajek, W. (2012). Anti-Listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland. Food Control, 26(1), 117–124.

Wang, Y., Shang, N., Qin, Y., Zhang, Y., Zhang, J., & Li, P. (2018). The complete genome sequence of Lactobacillus plantarum LPL-1, a novel antibacterial probiotic producing class IIa bacteriocin. Journal of Biotechnology, 266(17), 84–88.

Woraprayote, W., Malila, Y., Sorapukdee, S., & Swetwiwathana, A. (2016). Bacteriocins from lactic acid bacteria and their applications in meat and meat products. MESC, 120, 118–132.

Zeng, X., Xia, W., Wang, J., Jiang, Q., Xu, Y., Qiu, Y., & Wang, H. (2014). Technological properties of Lactobacillus plantarum strains isolated from chinese traditional low salt fermented whole fish. Food Control, 40, 351–358.

Cómo citar

APA

Castro, L. D. P., Vecino-Gutierrez, K. P., Díaz-Moyano, L. J., Jaimes-Estévez, J. y Escalante-Hernández, H. (2018). Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate. Revista Colombiana de Biotecnología, 20(2), 78–88. https://doi.org/10.15446/rev.colomb.biote.v20n2.71184

ACM

[1]
Castro, L.D.P., Vecino-Gutierrez, K.P., Díaz-Moyano, L.J., Jaimes-Estévez, J. y Escalante-Hernández, H. 2018. Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate. Revista Colombiana de Biotecnología. 20, 2 (jul. 2018), 78–88. DOI:https://doi.org/10.15446/rev.colomb.biote.v20n2.71184.

ACS

(1)
Castro, L. D. P.; Vecino-Gutierrez, K. P.; Díaz-Moyano, L. J.; Jaimes-Estévez, J.; Escalante-Hernández, H. Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate. Rev. colomb. biotecnol. 2018, 20, 78-88.

ABNT

CASTRO, L. D. P.; VECINO-GUTIERREZ, K. P.; DÍAZ-MOYANO, L. J.; JAIMES-ESTÉVEZ, J.; ESCALANTE-HERNÁNDEZ, H. Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate. Revista Colombiana de Biotecnología, [S. l.], v. 20, n. 2, p. 78–88, 2018. DOI: 10.15446/rev.colomb.biote.v20n2.71184. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/71184. Acesso em: 7 oct. 2024.

Chicago

Castro, Liliana Del Pilar, Kenia Paola Vecino-Gutierrez, Luisa Jasbleidy Díaz-Moyano, Jaime Jaimes-Estévez, y Humberto Escalante-Hernández. 2018. «Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate». Revista Colombiana De Biotecnología 20 (2):78-88. https://doi.org/10.15446/rev.colomb.biote.v20n2.71184.

Harvard

Castro, L. D. P., Vecino-Gutierrez, K. P., Díaz-Moyano, L. J., Jaimes-Estévez, J. y Escalante-Hernández, H. (2018) «Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate», Revista Colombiana de Biotecnología, 20(2), pp. 78–88. doi: 10.15446/rev.colomb.biote.v20n2.71184.

IEEE

[1]
L. D. P. Castro, K. P. Vecino-Gutierrez, L. J. Díaz-Moyano, J. Jaimes-Estévez, y H. Escalante-Hernández, «Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate», Rev. colomb. biotecnol., vol. 20, n.º 2, pp. 78–88, jul. 2018.

MLA

Castro, L. D. P., K. P. Vecino-Gutierrez, L. J. Díaz-Moyano, J. Jaimes-Estévez, y H. Escalante-Hernández. «Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate». Revista Colombiana de Biotecnología, vol. 20, n.º 2, julio de 2018, pp. 78-88, doi:10.15446/rev.colomb.biote.v20n2.71184.

Turabian

Castro, Liliana Del Pilar, Kenia Paola Vecino-Gutierrez, Luisa Jasbleidy Díaz-Moyano, Jaime Jaimes-Estévez, y Humberto Escalante-Hernández. «Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate». Revista Colombiana de Biotecnología 20, no. 2 (julio 1, 2018): 78–88. Accedido octubre 7, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/71184.

Vancouver

1.
Castro LDP, Vecino-Gutierrez KP, Díaz-Moyano LJ, Jaimes-Estévez J, Escalante-Hernández H. Lighting the anaerobic digestion process in rural areas: obtainment of struvite from bovine manure digestate. Rev. colomb. biotecnol. [Internet]. 1 de julio de 2018 [citado 7 de octubre de 2024];20(2):78-8. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/71184

Descargar cita

CrossRef Cited-by

CrossRef citations7

1. Dag Lorick, Biljana Macura, Marcus Ahlström, Anders Grimvall, Robin Harder. (2020). Effectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: a systematic review. Environmental Evidence, 9(1) https://doi.org/10.1186/s13750-020-00211-x.

2. Ehiaze Ehimen, Seán O’Connor. (2020). Biorefineries: A Step Towards Renewable and Clean Energy. Clean Energy Production Technologies. , p.561. https://doi.org/10.1007/978-981-15-9593-6_22.

3. Xiaoqian Zhang, Igor M. Lopes, Ji-Qin Ni, Yongping Yuan, Chi-Hua Huang, Douglas R. Smith, Indrajeet Chaubey, Shubiao Wu. (2021). Long-term performance of three mesophilic anaerobic digesters to convert animal and agro-industrial wastes into organic fertilizer. Journal of Cleaner Production, 307, p.127271. https://doi.org/10.1016/j.jclepro.2021.127271.

4. Rubén Rodríguez-Alegre, Julia Zapata-Jiménez, Xialei You, Montserrat Pérez-Moya, Sonia Sanchis, Julia García-Montaño. (2023). Nutrient recovery and valorisation from pig slurry liquid fraction with membrane technologies. Science of The Total Environment, 874, p.162548. https://doi.org/10.1016/j.scitotenv.2023.162548.

5. Estefanny Quispe-Cardenas, Shane Rogers. (2021). Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. Water Research, 204, p.117596. https://doi.org/10.1016/j.watres.2021.117596.

6. E.M. Barampouti, S. Mai, D. Malamis, K. Moustakas, M. Loizidou. (2020). Exploring technological alternatives of nutrient recovery from digestate as a secondary resource. Renewable and Sustainable Energy Reviews, 134, p.110379. https://doi.org/10.1016/j.rser.2020.110379.

7. Claver Numviyimana, Jolanta Warchoł, Grzegorz Izydorczyk, Sylwia Baśladyńska, Katarzyna Chojnacka. (2020). Struvite production from dairy processing wastewater: Optimizing reaction conditions and effects of foreign ions through multi-response experimental models. Journal of the Taiwan Institute of Chemical Engineers, 117, p.182. https://doi.org/10.1016/j.jtice.2020.11.031.

Dimensions

PlumX

Visitas a la página del resumen del artículo

436

Descargas

Los datos de descargas todavía no están disponibles.