Caracterización de indicadores de la calidad del fruto en líneas de fresa transgénicas con genes silenciados que codifican para enzimas pectinolíticas
Characterization of quality traits in transgenic strawberry fruits with genes encoding pectinolytic enzymes down-regulated
DOI:
https://doi.org/10.15446/rev.colomb.biote.v20n1.73673Palabras clave:
maduración de frutos, pared celular, pectinas, postcosecha, transformación genética (es)cell wall, fruit ripening, genetic transformation, pectins, postharvest (en)
Some quality traits of transgenic strawberry fruits with low levels of expression of the pectinase genes FaPG1 (PG lines) or FaplC gene (APEL lines) were evaluated. Two independent lines per transgenic genotype were analyzed. Soluble solids were similar in control and transgenic lines. Similarly, pH and titratable acidity was similar in lines PG29, APEL21 and control; however, lines PG62 and APEL39 showed acidity values higher than the control. The color parameters L*, a* and b* were similar in control and transgenic fruits; however, line APEL21 displayed a lower value of anthocyanin content. The highest values of fruit firmness, measured with an extrusion test, were observed in both PG transgenic lines and in the APEL39 line. Regarding the drip loss, APEL39 line showed a higher value than the control, but the APEL21 line displayed lower values. The content of phenolic compounds was analyzed in line PG29, not observing significant differences with the control. Finally, the antiradical activity of the fruit was slightly lower in the line PG29 than in the control. The results obtained indicate that the silencing of the pectinase genes increases the firmness of the fruit without substantially modifying other quality parameters such as color, acidity, soluble solids or anthocyanin content.
Referencias
Agius, F., González-Lamothe, R., Caballero, J.L., Muñoz-Blanco, J., Botella, M.A., & Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnolo, 21, 177-181.
Aguayo, E., Jansasithorn, R., & Kader, A.A. (2006). Combined effects of 1-methylcyclopropene, calcium chloride dip, and/or atmospheric modification on quality changes in fresh-cut strawberries. Postharvest Biology and Technology, 40, 269-278.
Alcántara, M. (2009). Estimación de los daños físicos y evaluación de la calidad de la fresa durante el manejo poscosecha y el transporte simulado. [Tesis doctoral]. Universidad Politécnica de Valencia- Universidad de Guanajuato. Valencia, España.
Bourne, M. (2002). Food texture and viscosity: concept and measurement. 2nd Edition. Academic Press Book.
Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.
Brummell, DA. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33, 103–119.
Di Vittori, L., Mazzoni, L., Battino, M., & Mezzetti, B. (2018). Pre-harvest factors influencing the quality of berries. Scientia Horticulturae, 233, 310-322.
Garzón, G. (2008). Las antocianinas como colorantes naturales y compuestos bioactivos: revisión. Acta Biológica Colombiana, 13(3), 27-36.
Giusti, M.M., Rodríguez-Saona, L.E.,& Wrolstad, R. E. (1999). Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. Journal of Agricultural and Food Chemistry, 47, 4631–4637.
Hannum, S. (2004). Potential impact of strawberries on human health: A review of the science. Critical Reviews in Food Science and Nutrition, 44(1), 1-17.
Jiménez-Bermúdez, S., Redondo-Nevado, J., Muñoz-Blanco, J., Caballero, J.L., López-Aranda, J.M., Valpuesta, V., Pliego-Alfaro, F., Quesada, M.A., & Mercado, J.A. (2002). Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiology, 128, 751-759.
Lara I., García, P., & Vendrell, M. (2006). Post-harvest heat treatments modify cell wall composition of strawberry (Fragaria × ananassa Duch.) fruit. Scientia Horticulturae, 109, 48-53.
Lefever, G., Vieuille, M., Delage, N., D´Harlingue, A., De Monteclerc, J., & Bompeix, G. (2004). Characterization of cell wall enzyme activities, pectin composition, and technological criteria of strawberry cultivars (Fragaria x ananassa Duch). Journal of Food Science, 69, 221-226.
Lunkenbein, S., Coiner, H., De Vos, C.H.R., Schaart, J.G., Boone, M.J., Krens, F.A, Schwab, W., & Salentijn, E.M.J. (2006). Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria ananassa). Journal of Agricultural and Food Chemistry, 54, 2145-2153.
Manning, K. (1993). Soft fruit. En: Biochemistry of Fruit Ripening. (G.B. Seymour, J.E. Taylor and G.A. Tucker). Chapman and Hall, Cambridge, UK. p. 347-377.
Martínez, F. (2002). Viticultura de calidad: factores que afectan al contenido de compuestos fenólicos. ACE. Revista de Enología, 0(21).
Martínez-Bolaños, M., Nieto-Angel, D., Téliz-Ortiz, D., Rodríguez-Alcazar, J., Martínez-Damian, Ma. T., Vaquera-Huerta, H., & Carrillo Mendoza, O. (2008). Comparación cualitativa de fresas (Fragaria x ananassa Duch.) de cultivares mexicanos y estadounidenses. Revista Chapingo. Serie horticultura, 14(2), 113-119.
Morales-Delgado, D.Y., Tellez-Medina, D.I., Rivero-Ramírez, N. L., Arellano-Cardenas, S., Lopez-Cortez, S., Hernandez-Sanchez, H. Gutierrez-Lopez, G., Cornejo-Mazon, M. (2014). Effect of convective drying on total anthocyanin content, antioxidant activity and cell morphometric parameters of strawberry parenchymal tissue (Fragaria x ananassa Duch). Revista Mexicana de Ingeniería Química, 13(1), 179-187.
Nunes, C., Brecht, B., Morais, A., Sargent, S. (2006). Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. Journal of the Science of Food and Agriculture, 86(2), 180-190.
Ojeda-Real, L.A., Cárdenas-Navarro, R., Lobit, P., Grageda-Cabrera, O., Valencia-Cantero, E., Macías-Rodríguez, L. (2008). Nitric nutrition and irrigation systems effects on strawberry (Fragaria x ananassa Duch.) flavor. Revista Chapingo. Serie horticultura, 14(1), 61-70.
Paniagua, C., Santiago-Doménech, N., Kirby, A.R., Gunning, A.P., Morris, V.J., Quesada, M.A., Matas, A.J., & Mercado, J.A. (2017). Structural changes in cell wall pectins during strawberry fruit development. Plant Physiology and Biochemistry, 118, 55–63.
Payasi, A., Misra, P., & Sanwal, G. (2006). Purification and characterization of pectate lyase from banana (Musa acuminata) fruits. Phytochemistry, 67, 861-869.
Posé, S., Paniagua, C., Matas, A.J., Gunning, A.P., Morris, V.J., Quesada, M.A., & Mercado, J.A. (2018). A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science & Technology. En prensa. https://doi.org/10.1016/j.tifs.2018.02.011.
Quesada, M., Blanco-Portales, R., Posé, S., García-Gago, J., Jiménez-Bermúdez, S., Muñoz-Serrano, A., Caballero, C., Pliego-Alfaro, F., Mercado, J., Muñoz-Blanco, J. (2009). Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiology, 150, 1022–1032.
Restrepo, J., & Aristizábal, T. (2010). Conservación de fresa (Fragaria x ananassa Duch cv. Camarosa) mediante la aplicación de recubrimientos comestibles de gel mucilaginoso de penca sábila (Aloe Barbadensis Miller) y cera de carnaúba. Revista Vitae, 17(3), 252-263.
Schwab, W., & Raab, T. (2004). Developmental changes during strawberry fruit ripening and physico-chemical changes during postharvest storage. In: Production Practices and Quality Assessment of Food Crops. Vol. 3, Quality Handling and Evaluation, Netherlands. (R. Dris and S.M. Jain). Kluwer Academic Publisher. p. 341-369.
Sesmero, R., Quesada, J., & Mercado, J.A. (2007). Antisense inhibition of pectate lyase gene expression in strawberry fruit: characteristics of fruits processed into jam. Journal of Food Engineering, 79, 194-199.
Severo, J., Tiecher, A., Chaves, F., Silva, J., & Rombaldi, C. (2011). Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chemistry, 126, 995–1000.
Tulipani, S., Mezzetti, B., Capocasa, F., Bompadre, S., Beekwilder, J., de Vos, C.H.R., Capnoglu, E., Bovy, A., & Battino, M. (2008). Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food Chemistry, 56, 696-704.
Wang, D., Yeats, T.H., Uluisik, S., Rose, J.K.C., Seymour, G.B. (2018). Fruit softening: revisiting the role of pectin. Trends in Plant Science. En prensa. https://doi.org/10.1016/j.tplants.2018.01.006.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Candelas Paniagua, Pablo Ric-Varas, Juan A García-Gago, Gloria López-Casado, Rosario Blanco-Portales, Juan Muñoz-Blanco, Julia Schückel, J Paul Knox, Antonio J Matas, Miguel A Quesada, Sara Posé, José A Mercado, Ariel Vicente. (2020). Elucidating the role of polygalacturonase genes in strawberry fruit softening. Journal of Experimental Botany, 71(22), p.7103. https://doi.org/10.1093/jxb/eraa398.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Revista Colombiana de Biotecnología

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).