Identificación y evaluación de actividad celulolítica en aislamientos nativos de Trichoderma spp obtenidos de biomasa de palma de aceite
Identification and screening of lignocellulosic activity in native isolates of Trichoderma spp., obtained from palm oil biomass
DOI:
https://doi.org/10.15446/rev.colomb.biote.v20n1.73693Palabras clave:
ITS1-ITS4, PCR, cultivos monospóricos, celulasas, Trichoderma (es)ITS1-ITS4, monospore crops, PCR, cellulases, Trichoderma (en)
Se aislaron previamente ocho cepas nativas de racimos de palma de aceite en descomposición de Trichoderma sp. provenientes de la región de Cumaral, Meta, Colombia. Se utilizó la región de los ITS1-ITS4 para la identificación molecular y se determinó la actividad celulolítica (actividad sobre papel filtro) del complejo producido por las cepas utilizando residuos de palma como sustrato. Siete aislamientos nativos presentarón 100% de similaridad con hongos del género Trichoderma. Se observó para siete cepas, la presencia de las cinco anclas que identifican hongos del género Trichoderma, identificándose cuatro de los hongos nativos como Trichoderma koningiopsis (HR-04-89; HR-11-89; HR-19-89; y HR-06-89) y cuatro como Trichoderma asperellum (HR-01-89; HR-03-89; HR-16-89; HR-18-89). El bioensayo mostró que las cepas evaluadas de Trichoderma son estadísticamente significativas sobre la actividad enzimática de celulasas sobre papel filtro (p<0.05). Además, las cepas HR-01-89, HR-03-89, HR-11-89, HR-04-89 y HR-18-89 no presentaron diferencias en la actividad enzimática. La cepa Trichoderma reesei utilizada como referencia, presentó un comportamiento superior y diferente comparado con las cepas nativas. La cepa nativa HR-18-89 (Trichoderma asperellum) presentó mayores niveles de actividad enzimática, 78% del valor de la cepa referencia. Es importante identificar y evaluar cepas nativas de Trichoderma sp. con novedosas actividades biológicas que permitan degradar la celulosa recalcitrante de los racimos de palma africana.
Previously, there were isolated eight native strains of Trichoderma sp. from a cluster of decomposing oil palm from Cumaral, Meta, Colombia. The ITS1-ITS4`s region was used for the molecular identification and the cellulase activity (filter paper activity) of the complex produced by strains was determined using palm waste as substrate. Seven native isolations showed between 97-100% similarity with fungi of the genus Trichoderma. It was observed for seven of the eight strains the presence of the five anchors which identify fungi of the genus Trichoderma, finding five of the native fungi such as Trichoderma koningiopsis (HR-04-89; HR-11-89; HR-19-89; y HR-06-89) four as Trichoderma asperellum (HR-01-89; HR-03-89; HR-16-89; HR-18-89). The bioassay showed that Trichoderma strains tested are statistically significant on the enzymatic activity of cellulases on filter paper (p <0.05). In addition, strains HR-01-89, HR-03-89, HR-11-89, HR-04-89 and HR-18-89 showed no differences in enzymatic activity. The reference strain used, Trichoderma reesei produce a superior and different behavior compared with the native strains. The native strain HR-18-89 (Trichoderma asperellum) had higher levels of enzyme activity, 78% of the value of the reference strain. It is important to identify and evaluate native strains of Trichoderma sp. with innovative biological activities that allow to degrade the recalcitrant cellulose of the African palm clusters.
Referencias
Abu, Bakar, N., Abd-Aziz, S., Hassan, M. & Ghazali, F. (2010). Isolation and selection of appropriate cellulolytic mixed microbial cultures for cellulases production from oil palm empty fruit bunch. Biotechnology 9(1):73-78 doi: 10.3923/biotech.2010.73.78.
Alam, M.Z., Mamun, A.A., Qudsieh, I.Y., Muyibi, S.A., Salleh, H.M. & Omar, N.M. (2009). Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochemical Engineering Journal 46(1):61-64 doi: 10.1016/j.bej.2009.03.010.
Baharuddin, A.S., Kazunori, N., Abd-Aziz, S., Tabatabaei, M., Rahman, N.A., Hassan, M.A., Wakisaka, M., Sakai, K. & Shirai, Y. (2009). Characteristics and microbial succession in co-composting of oil palm empty fruit bunch and partially treated palm oil mill effluent. The Open Biotechnology Journal 3:92-100.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-254 doi: 10.1016/0003-2697(76)90527-3.
Boureghda, H., Bouznad, Z., & Decock, C. (2008). Cultural and molecular characterizations of some isolates of Trichoderma spp. Arab Journal of Plant Protection, 26, 75-80.
Fedepalma. (2018). Sistema de Información Estadística del Sector Palmero - SISPA, Vol. 2012. Revisado, Febrero de 2018.
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and applied Chemistry, 59(2), 257-268.
Ghosh, P. & Singh, A. (1993). Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. Advances in Applied Microbiology 39:295-333 doi: 10.1016/S0065-2164(08)70598-7.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000.
Jiang, X., Geng, A., He, N. & Li, Q. (2011). New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Journal of Bioscience and Bioengineering 111(2):121-127 doi: 10.1016/j.jbiosc.2010.09.004.
Juhasz, T., Szengyel, Z., Reczey, K., Siika-Aho, M. & Viikari, L. (2005). Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry 40(11):3519-3525 doi: 10.1016/j.procbio.2005.03.057.
Kanjanamaneesathian, M., Phetcharat, V., Pengnoo, A. & Upawan, S. (2003). Use of Trichoderma harzianum cultured on ground mesocarp fibre of oil-palm as seed treatment to control Pythium aphanidermatum, a causal agent of damping-off of Chinese kale seedling. World Journal of Microbiology and Biotechnology 19(8):825-829 doi: 10.1023/A:1026004315223.
Kelly-Yong, T.L., Lee, K.T., Mohamed, A.R., & Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35(11):5692-5701 doi: 10.1016/j.enpol.2007.06.017.
Kindermann, J., El-Ayouti, Y., Samuels, G. J., & Kubicek, C. P. (1998). Phylogeny of the GenusTrichodermaBased on Sequence Analysis of the Internal Transcribed Spacer Region 1 of the rDNA Cluster. Fungal Genetics and Biology, 24(3), 298-309.
Kubicek, C. P., Bissett, J., Druzhinina, I., Kullnig-Gradinger, C., & Szakacs, G. (2003). Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genetics and Biology, 38(3), 310-319.
Liming, X. & Xueliang, S. (2004). High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technology 91(3):259-262 doi: 10.1016/S0960-8524(03)00195-0.
Mandels, M. & Weber, J. (1969). The production of cellulases. Advances in Chemistry 95, 391-414 doi: 10.1021/ba-1969-0095.ch023.
Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3):426-428 doi: 10.1021/ac60147a030.
Prasertsan, P., Kittikul, A.H., Kunghae, A. & Maneesri, J.S. (1997). Optimization for xylanase and cellulase production from Aspergillus niger ATTC 6275 in palm oil mill wastes and its application. World Journal of Microbiology and Biotechnology 13(5):555-559 doi: 10.1023/A:1018569426594.
Rabinovich, M., Melnick, M. & Bolobova, A. (2002). The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67(8):850-871 doi: 10.1023/A:1019958419032.
Rifai. M. A (1969). A revision of the genus Trichoderma. Mycological Papers, 116: 1156.
Rodríguez, I. & Piñeros, Y. (2007). Production of enzymatic complex in solid state fermentation by Trichoderma sp. using palm oil empty fruit bunch (EFB) as substrate. Vitae 14(2):35-42.
Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances 27(2), 185-194 doi: 10.1016/j.biotechadv.2008.11.001.
Umikalsom, M., Ariff, A., Shamsuddin, Z., Tong, C., Hassan, M. & Karim, M. (1997). Production of cellulase by a wild strain of Chaetomium globosum using delignified oil palm empty-fruit-bunch fibre as substrate. Applied Microbiology and Biotechnology 47(5):590-595 doi: 10.1007/s002530050978.
Shahriarinour, M., Wahab, M.N.A., Ariff, A.B., Rosfarizan, M. & Shuhaimi, M. (2011). Effect of various pretreatments of oil palm empty fruit bunch fibres for subsequent use as substrate on the performance of cellulase production by Aspergillus terreus. BioResources 6(1): 291-307.
Teoh, Y., Mashitah, M. (2010). Cellulase production by Pycnoporus sanguineus on oil palm residues through pretreatment and optimization study. Jornal of Applied Sciences 10(12): 1036-1043.
Uusitalo, J.M., Nevalainen, H.K., Harkki, A.M., Knowles, J.K.C. & Penttilä, M.E. (1991). Enzyme production by recombinant Trichoderma reesei strains. Journal of Biotechnology, 17(1):35-49 doi: 10.1016/0168-1656(91)90025-Q.
Wahid, M.Z.A., Salleh, M., Yusof, F., Karim, M.I.A. & Alam, M.Z. (2011). Factors affecting endoglucanase production by Trichoderma reesei RUT C-30 from solid state fermentation of oil palm empty fruit bunches using Plackett-Burman design. African Journal of Biotechnology 10(46):9402-9409.
Wang, Z., Ong, H.X. & Geng, A. (2012), Cellulase production and oil palm empty fruit bunch saccharification by a new isolate of Trichoderma koningii D-64. Process Biochemistry 47(11):1564-1571 doi: 10.1016/j.procbio.2012.07.001.
White, T.J., Bruns, T.D., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols, a guide to methods and applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ eds. Academic Press. San Diego, California.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Etna Milena Sánchez Castelblanco, Juan Pablo Heredia Martín, Sonia Marcela Buitrago Morales, Juan Pablo Medina Rodríguez. (2020). Aislamiento e identificación de microorganismos potencialmente amilolíticos y celulolíticos de suelos de humedales de Bogotá. Revista Colombiana de Biotecnología, 22(1), p.36. https://doi.org/10.15446/rev.colomb.biote.v22n1.71278.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2018 Revista Colombiana de Biotecnología

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).