Factores que afectan la expresión transitoria del gen GUS en yuca (Manihot esculenta Crantz)
Factors affecting the transient expression of gene GUS in cassava (Manihot esculenta Crantz)
Fatores que afetam a expressão transitória do gene GUS na mandioca (Manihot esculenta Crantz)
DOI:
https://doi.org/10.15446/rev.colomb.biote.v20n2.77063Palabras clave:
Agrobacterium tumefaciens, Beta-glucuronidasa, VirG, agroinfiltración, yuca (es)Agrobacterium tumefaciens, beta-glucuronidase, VirG, agroinfiltration, cassava (en)
Agrobacterium tumefaciens, Beta-glucuronidase, VirG, agroinfiltração, mandioca (pt)
La expresión transitoria es una métodología ampliamente utilizada para el estudio de genes. Sin embargo, hasta la fecha no existe un reporte en donde se utilice esta técnica en hojas de yuca de plantas adultas. Por esta razón este trabajo se centró en la determinación de algunos parámetros críticos para la expresión transitoria del gen GUS en yuca como son: la metodología para introducir la bacteria, la cepa de Agrobacterium, el tiempo post-inoculación, la introducción del gen VirG y la expresión del gen GUS en algunas variedades de yuca. Los resultados indicaron niveles más altos de expresión del gen GUS entre 5-7 días post-inoculación (dpi), agroinfiltrando con la cepa GV3101 y un incremento en la virulencia de esta cepa mediante la introducción del gen VirG. Por último se observaron diferentes niveles de expresión del gen GUS entre las variedades de yuca evaluadas, lo que indica que el factor genético es clave en la eficiencia de la agroinfiltración en este cultivo.
Transient expression is a common technique used for the co-expression of proteins for a wide range of experiments in molecular biology. This technique has been frequently used for gene study in plant pathogen interaction and has proved to be versatile and effective. However, there are still few reports and sparse data for transient expression in cassava leaves from adult/mature plants. For this reason, in this study we evaluated some regards of transient expression for the gene GUS in cassava: bacteria introduction methods, type of Agrobacterium strains, time post-inoculation, introduction of gene VirG and GUS and their expression into different cassava varieties. The results show that GUS expression is more efficient between 5-7 days post-inoculation with the GV3101 strain, moreover the virulence of this strain increases with the VirG gene. Finally, we observed a range of GUS expression pattern between different cassava varieties, altogether showing that the genetic factor is important for an accurate and effective agroinfiltration in cassava.
Referencias
Aung, K., Xin, X., Mecey, C. & He, S. Y. (2017). Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants, en Nilles, M. L. y Condry, D. L. J. (eds.) Type 3 Secretion Systems: Methods and Protocols. New York, NY: Springer New York, pp. 141-153. doi: 10.1007/978-1-4939-6649-3_12.
Beltran, J., Prías, M., Al-Babili, S., Ladino, Y., López, D., Beyer, P., Chavarriaga, P. & Tohme, J. (2010). Expression pattern conferred by a glutamic acid-rich protein gene promoter in W eld-grown transgenic cassava ( Manihot esculenta Crantz ), Planta, 231, pp. 1413-1424. doi: 10.1007/s00425-010-1144-7.
Bhaskar, P. B., Venkateshwaran, M., Wu, L., Ané, J. M. & Jiang, J. (2009). Agrobacterium-mediated transient gene expression and silencing: A rapid tool for functional gene assay in potato, PLoS ONE, 4(6), pp. 1-8. doi: 10.1371/journal.pone.0005812.
Buchanan, B. B., Gruissem, W. & Jones, R. L. (2015). Biochemistry & Molecular Biology of Plants, Journal of Chemical Information and Modeling. doi: 10.1017/CBO9781107415324.004.
Chen, C.-Y., Wang, L. & Winans, S. C. (1991). Characterization of the supervirulent virG gene of the Agrobacterium tumefaciens plasmid pTiBo542, MGG Molecular & General Genetics, 230(1-2), pp. 302-309. doi: 10.1007/BF00290681.
Chen, X., Equi, R., Baxter, H., Berk, K., Han, J., Agarwal, S. & Zale, J. (2010). A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings, Biotechnology for Biofuels, 3(1), p. 9. doi: 10.1186/1754-6834-3-9.
Cheng, Q., Mao, W., Xie, W., Liu, Q., Cao, J., Yuan, M., Zhang, Q., Li, X. & Wang, S. (2017). Characterization of a disease susceptibility locus for exploring an efficient way to improve rice resistance against bacterial blight, Science China Life Sciences, 60(3), pp. 298-306. doi: 10.1007/s11427-016-0299-x.
Chetty, V. J., Ceballos, N., Garcia, D., Narváez-Vásquez, J., Lopez, W. & Orozco-Cárdenas, M. L. (2013). Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom, Plant Cell Reports, 32(2), pp. 239-247. doi: 10.1007/s00299-012-1358-1.
Cui, M.-Y., Wei, W., Gao, K., Xie, Y.-G., Guo, Y. & Feng, J.-Y. (2017). A rapid and efficient Agrobacterium-mediated transient gene expression system for strawberry leaves and the study of disease resistance proteins, Plant Cell, Tissue and Organ Culture (PCTOC). Springer Netherlands, 0(0), p. 0. doi: 10.1007/s11240-017-1279-3.
Díaz, P.-T., Bernal, A. & López, C. (2014). Transient GUS gene expression in cassava (Manihot esculenta Crantz) using Agrobacterium tumefaciens leaf infiltration, Revista MVZ Cordoba, 19(3), pp. 4338-4349.
Du, J., Rietman, H. & Vleeshouwers, V. G. A. A. (2014). Agroinfiltration and PVX Agroinfection in Potato and Nicotiana benthamiana, Journal of Visualized Experiments, 83, pp. 2-7. doi: 10.3791/50971.
Escuola, C. ., Tripathi, L. & Fawole. (2011). EFFECTS OF VARIOUS VIRULENT STRAINS OF Agrobacterium tumefaciens ON GENETIC TRANSFORMATION OF BANANA (Musa sp.) CULTIVAR WILLIAMS, African Journal of Horticultural Science, 5, pp. 84-91.
FAO (2017). Food Outlook, en Food and Agriculture Organization of the United Nations, pp. 48-53. doi: ISSN 1560-8182.
Franche, C., Bogusz, D., Schöpke, C., Fauquet, C. & Beachy, R. N. (1991). Transient gene expression in cassava using high-velocity microprojectiles, Plant Molecular Biology, 17(3), pp. 493-498. doi: 10.1007/BF00040643.
Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants., The EMBO journal, 6(13), pp. 3901-7. doi: 10.1073/pnas.1411926112.
Jelly, N. S., Valat, L., Walter, B. & Maillot, P. (2014). Transient expression assays in grapevine: A step towards genetic improvement, Plant Biotechnology Journal, 12(9), pp. 1231-1245. doi: 10.1111/pbi.12294.
Kapila, J., De Rycke, R., Van Montagu, M. & Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves, Plant Science, 122(1), p. 1Kapila, J. et al., 1997. An Agrobacterium-mediate. doi: 10.1016/S0168-9452(96)04541-4.
Koetle, M. J., Baskaran, P., Finnie, J. F., Soos, V., Balázs, E. & Van Staden, J. (2017). Optimization of transient GUS expression of Agrobacterium-mediated transformation in Dierama erectum Hilliard using sonication and Agrobacterium, South African Journal of Botany. SAAB, 111, pp. 307-312. doi: 10.1016/j.sajb.2017.03.025.
Lee, M. W. & Yang, Y. (2013). Transient Expression Assay by Agroinfiltration of Leaves, en Methods in Molecular Biology, pp. 225-229.
Leuzinger, K., Dent, M., Hurtado, J., Stahnke, J., Lai, H., Zhou, X. & Chen, Q. (2013). Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins., Journal of visualized experiments : JoVE, (77), pp. 1-9. doi: 10.3791/50521.
Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N. & Gai, J. (2017). Optimization of Agrobacterium -Mediated Transformation in Soybean, Frontiers in plant science, 8(246), pp. 1-15. doi: 10.3389/fpls.2017.00246.
Lu, Y., Chen, X., Wu, Y., Wang, Y., He, Y. & Wu, Y. (2013). Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay, PLoS ONE, 8(2). doi: 10.1371/journal.pone.0057171.
Luong, H. ., Shewry, P. & Lazzeri, P. (1995). Transient gene expresion in cassava somatic embryos by tissue electroporation, Plant science, 107, pp. 105-115.
Matsuo, K. & Matsumura, T. (2017). Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins, Journal of Bioscience and Bioengineering. Elsevier Ltd, 124(2), pp. 215-220. doi: 10.1016/j.jbiosc.2017.02.019.
Nanjareddy, K., Arthikala, M.-K., Blanco, L., Arellano, E. S. & Lara, M. (2016). Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis, BMC Biotechnology. BMC Biotechnology, 16(1), p. 53. doi: 10.1186/s12896-016-0283-8.
Ospina, B. & Ceballos, H. (2012). La_Yuca_en_el_Tercer_Milenio.pdf.
Radchuk, V. V, Klocke, E., Radchuk, R. I., Neumann, M. & YaB, B. (2000). Production of transgenic rape plants (Brassica napus L.) using Agrobacterium tumefaciens. Genetika, 36(7), p. 932—941. Disponible en: http://europepmc.org/abstract/MED/10994497.
Rosenthal, D. M. & Ort, D. R. (2011). Examining Cassava’s Potential to Enhance Food Security Under Climate Change, Tropical Plant Biology. doi: 10.1007/s12042-011-9086-1.
Schöb, H., Kunz, C. & Meins Jr., F. (1997). Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing, Molecular and General Genetics MGG, 256(5), pp. 581-585. doi: 10.1007/s004380050604.
Shah, K. H., Almaghrabi, B. & Bohlmann, H. (2013). Comparison of Expression Vectors for Transient Expression of Recombinant Proteins in Plants, Plant Molecular Biology Reporter, 31(6), pp. 1529-1538. doi: 10.1007/s11105-013-0614-z.
Sheludko, Y. V., Sindarovska, Y. R., Gerasymenko, I. M., Bannikova, M. A. & Kuchuk, N. V.(2007). Comparison of severalNicotiana species as hosts for high-scaleAgrobacterium-mediated transient expression, Biotechnology and Bioengineering. Wiley Subscription Services, Inc., A Wiley Company, 96(3), pp. 608-614. doi: 10.1002/bit.21075.
Solliman, M. E. M., Mohasseb, H. A., Al-khateeb, A. A., Al-khayri, J. M. & Al-khateeb, S. A. (2017). Transient GUS Gene Expression in Date Palm Fruit Using Agroinjection Transformation Technique, en Methods in Molecular Biology, pp. 295-305. doi: 10.1007/978-1-4939-7156-5.
Suma, B., Keshavachandran, R. & Nybe, E. V (2008). Agrobacterium tumefaciens mediated transformation and regeneration of ginger ( Zingiber officinale Rosc .), Journal of Tropical Agriculture 46, 46(1-2), pp. 38-44.
Takemoto, D. & Jones, D. A. (2014). Particle Bombardment-Mediated Transient Expression to Identify Localization Signals in Plant Disease Resistance Proteins and Target Sites for the Proteolytic Activity of Pathogen Effectors, en Birch, P., Jones, J. T., y Bos, J. I. B. (eds.) Plant-Pathogen Interactions: Methods and Protocols. Totowa, NJ: Humana Press, pp. 91-101. doi: 10.1007/978-1-62703-986-4_7.
Torregrosa, L., Iocco, P. & Thomas, M. R. (2002).Agrobacterium -mediated transformation of Vitis vinifera L ., American Journal of Enology and Viticulture, 53(January), pp. 183-190.
Wroblewski, T., Tomczak, A. & Michelmore, R. (2005). Optimization of Agrobacterium -mediated transient assays of gene expression in lettuce , tomato and Arabidopsis, Plant Biotechnology Journal, 3, pp. 259-273. doi: 10.1111/j.1467-7652.2005.00123.x.
Wu, J., Liu, Q., Geng, X., Li, K., Luo, L. & Liu, J. (2017). Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava ( Manihot esculenta Crantz ), BMC Biotechnology. BMC Biotechnology, 17(29), pp. 1-8. doi: 10.1186/s12896-017-0349-2.
Yasuda, S., Aoyama, S., Hasegawa, Y., Sato, T. & Yamaguchi, J. (2017). Arabidopsis CBL-Interacting Protein Kinases Regulate Carbon/Nitrogen-Nutrient Response by Phosphorylating Ubiquitin Ligase ATL31, Molecular Plant. Elsevier Ltd, 10(4), pp. 605-618. doi: 10.1016/j.molp.2017.01.005.
Zottini, M., Barizza, E., Costa, A., Formentin, E., Ruberti, C., Carimi, F. & Lo Schiavo, F. (2008).Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells, Plant Cell Reports, 27(5), pp. 845-853. doi: 10.1007/s00299-008-0510-4.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2018 Revista Colombiana de Biotecnología

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).