Publicado

2020-12-01

Bacillus cereus bacteria endófita promotora de crecimiento vegetal

Bacillus cereus endophytic bacterial plant growth promoter

Promotor de crescimento de plantas bacterianas endofíticas Bacillus cereus

DOI:

https://doi.org/10.15446/rev.colomb.biote.v22n2.81723

Palabras clave:

antimicrobiano, densidad poblacional, Lippia origanoides, microorganismo, tejido vegetal. (es)
antimicrobial, population density, Lippia origanoides, microorganism, Plant tissue. (en)
antimicrobiano, densidade populacional, Lippia origanoides, microorganismo, tecido vegetal (pt)

Descargas

Autores/as

La planta Lippia origanoides ha sido ampliamente estudiada debido al efecto antimicrobiano y antifúngico que poseen sus extractos y aceites esenciales, los cuales han sido probados contra un gran número de microorganismos patógenos. Sin embargo, es escasa la literatura que registra la diversidad de bacterias endófitas asociadas a esta especie de plantas. El objetivo del trabajo fue evaluar in vitro la capacidad de promoción de crecimiento vegetal de bacterias endófitas de Lippia origanoides en el municipio de Sincelejo-Sucre, Colombia. En este estudio se aislaron bacterias endófitas en medio de cultivo agar R2A a partir de diferentes tejidos, se evaluó la densidad poblacional (UFC/g de tejido) por conteo en superficie y la promoción de crecimiento vegetal de forma cualitativa en medios selectivos específicos. Se observaron diferencias significativas para la densidad poblacional de bacterias endófitas respecto al tipo de tejido, con mayores valores en la raíz (2,0 x 1010/g raíz), seguido del tallo (1,3 x 1010/g tallo) y hojas (9,2 x 109/g hoja). Se obtuvieron un total de 20 bacterias endófitas, los cuales dos mostraron capacidad solubilizadora de fosfato, fijación biológica de nitrógeno, producción de sideróforos y ACC desaminasa. Los morfotipos TLO5 y RLO4 fueron identificados molecularmente como Bacillus cereus, mostrando buenos resultados de promoción de crecimiento vegetal.

Lippia origanoides plants have been widely studied for their antimicrobial and antifungal effects of various extracts and essential oils against a large number of pathogenic microorganisms. However, to date there is little record of the diversity of endophytic bacteria associated with this plant species. The objective of the work was to evaluate in vitro the capacity to promote plant growth of endophytic bacteria of Lippia origanoides in the municipality of Sincelejo-Sucre, Colombia. In this study morphotypes were isolated and population density (CFU/ g of tissue) was determined; Qualitative plant growth tests were performed and molecularly identified. The results show that there were significant differences for population density of endophytic bacteria with respect to the type of tissue, with higher values at the root (2.0 x 1010 / g root), followed by the stem (1.3 x 1010 / g stem) and on the sheets (9.2 x 109 / g sheet). A total of 20 endophytic bacteria were isolated, showed phosphate solubilizing capacity, fixing nitrogen, siderophores production and ACC deaminase, corresponding to the TLO5 and RLO4 morphotypes such as Bacillus cereus endophytic bacteria associated with Lippia origanoides plants, which could become a possible resource biological to be used in the promotion of plant growth in these plants producing essential oils.

 

Lippia origanoides plantas têm sido amplamente estudadas por seus efeitos antimicrobianos e antifúngicos de vários extratos e óleos essenciais contra um grande número de microorganismos patogênicos. No entanto, até o momento, há pouco registro da diversidade de bactérias endofíticas associadas a esta espécie vegetal. O objetivo do trabalho foi avaliar in vitro a capacidade de promover o crescimento de bactérias endofíticas de Lippia origanoides no município de Sincelejo-Sucre, Colômbia. Neste estudo, os morfotipos foram isolados e a densidade populacional (UFC / g de tecido) foi determinada; Testes qualitativos de crescimento de plantas foram realizados e identificados molecularmente. Os resultados mostram que houve diferenças significativas para a densidade populacional de bactérias endofíticas em relação ao tipo de tecido, com maiores valores na raiz (2,0 x 1010 / g raiz), seguido do caule (1,3 x 1010 / g caule) e nas folhas (9,2 x 109 / g folha). Um total de 20 bactérias endofíticas foram isoladas, apresentaram capacidade de solubilização de fosfato, fixação de nitrogênio, produção de sideróforos e ACC deaminase, correspondendo aos morfotipos TLO5 e RLO4, como bactérias endofíticas de Bacillus cereus associadas a plantas de Lippia origanoides, o que poderia se tornar um possível recurso biológico para ser usado na promoção do crescimento de plantas nestas plantas que produzem óleos essenciais.

Referencias

Albesiano, S., Rangel-Churio, J. O., Cadena, A. 2003. La vegetación del cañón del río Chicamocha (Santander, Colombia). Caldasia, 25(1): 73-99.

Alviz, L., Pérez, A., Pérez-Cordero, A. 2017. Efecto inhibitorio de compuestos tipo metabolitos de bacterias endófitas contra Colletotrichum gloeosporioides y Burkholderia glumae. Colombiana de Ciencia Animal-RECIA, 18-25. DOI: https://doi.org/10.24188/recia.v9.nS.2017.516

Andrade, L. F., de Souza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Cardoso, A. M. S., Pereira, D. F. G. S. 2014. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. Journal of Microbiology, 52(1): 27-34. DOI: https://doi.org/10.1007/s12275-014-3019-2

Ardon, O., Nudelman, R., Caris, C., Libman, J., Shanzer, A., Chen, Y., Hadar, Y. 1998. Iron uptake in Ustilago maydis: tracking the iron path. Journal of bacteriology, 180(8): 2021-2026. DOI: https://doi.org/10.1128/JB.180.8.2021-2026.1998

Arrieta, L., Chamorro, L., Montes, D. 2017. Actividad antimicrobiana de bacterias endófitas aisladas de orégano serrano (Lippia origanoides) contra Burkholderia glumae y Colletotrichum gloeosporioides. Revista Colombiana de Ciencia Animal-RECIA, 93-98. DOI: https://doi.org/10.24188/recia.v9.nS.2017.526

Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Dietz, K. J. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47(7): 642-652. DOI: https://doi.org/10.1139/w01-062

Chaudhary, H. J., Peng, G., Hu, M., He, Y., Yang, L., Luo, Y., Tan, Z. 2012. Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microbial ecology, 63(4): 813-821. DOI: https://doi.org/10.1007/s00248-011-9978-5

Dawe, D. (2000). The potential role of biological nitrogen fixation in meeting future demand for rice and fertilizer. The quest for nitrogen fixation in rice, 1-9.

Ding, T., Palmer, M. W., Melcher, U. 2013. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC microbiology, 13(1): 1. DOI: https://doi.org/10.1186/1471-2180-13-1

Dixon, R., Kahn, D. 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8), 621. DOI: https://doi.org/10.1038/nrmicro954

Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C., Dixon, R.2012. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC genomics, 13(1): 162. DOI: https://doi.org/10.1186/1471-2164-13-162

El-Tarabily, K. A. 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant and Soil, 308(1-2): 161-174. DOI: https://doi.org/10.1007/s11104-008-9616-2

Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., Rodríguez, M. X., Barea, J. M. 2010. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45(3): 209-217. DOI: https://doi.org/10.1016/j.apsoil.2010.04.007

García, C. A., Passerini De Rossi, B., Alcaraz, E., Vay, C.,Franco, M. 2012. Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev Argent Microbiol, 44(3): 150-154.

Hennebelle, T., Sahpaz, S., Joseph, H., Bailleul, F. 2008. Ethnopharmacology of Lippia alba. Journal of ethnopharmacology, 116(2):211-222. DOI: https://doi.org/10.1016/j.jep.2007.11.044

Hunter, P. J., Hand, P., Pink, D., Whipps, J. M., & Bending, G. D. 2010. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl. Environ. Microbiol., 76(24): 8117-8125. DOI: https://doi.org/10.1128/AEM.01321-10

Kifle, M. H.,Laing, M. D. 2011. Determination of optimum dose and frequency of application of free-living diazotrophs (FLD) on lettuce. African Journal of Agricultural Research, 6(3): 671-675.

Lara, C. C., Oviedo, L., Alemán, A. 2011. Aislados nativos con potencial en la producción de ácido indol acético para mejorar la agricultura. Biotecnología en el Sector Agropecuario y Agroindustrial ,9(1): 17-23.

Luna Martínez, Laura, Martínez Peniche, Ramón A., Hernández Iturriaga, Montserrat, Arvizu Medrano, Sofía M., Pacheco Aguilar, Juan R. 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista fitotecnia mexicana, 36(1): 63-69. DOI: https://doi.org/10.35196/rfm.2013.1.63

Mano, H., Morisaki, H. 2008. Endophytic bacteria in the rice plant. Microbes and environments, 23(2): 109-117. DOI: https://doi.org/10.1264/jsme2.23.109

Matos, A. D., Gomes, I. C., Nietsche, S., Xavier, A. A., Gomes, W. S., Dos Santos Neto, J. A., Pereira, M. C. 2017. Phosphate solubilization by endophytic bacteria isolated from banana trees. Anais da Academia Brasileira de Ciências, 89(4), 2945-2954. DOI: https://doi.org/10.1590/0001-3765201720160111

Nair, D. N., Padmavathy, S. 2014. Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 2014: 11. DOI: https://doi.org/10.1155/2014/250693

Okunishi, S., Sako, K., Mano, H., Imamura, A., Morisaki, H. 2005. Bacterial flora of endophytes in the maturing seed of cultivated rice ( Oryza sativa ). Microbes Environ.20:168-177. DOI: https://doi.org/10.1264/jsme2.20.168

Oliveira, M. N., Santos, T. M., Vale, H. M., Delvaux, J. C., Cordero, A. P., Ferreira, A. B., ...Borges, A. C. 2013. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Canadian journal of microbiology, 59(4): 221-230. DOI: https://doi.org/10.1139/cjm-2012-0674

Pascual, M. E., Slowing, K., Carretero, E., Mata, D. S., Villar, A. 2001. Lippia: traditional uses, chemistry and pharmacology: a review. Journal of ethnopharmacology, 76(3): 201-214. DOI: https://doi.org/10.1016/S0378-8741(01)00234-3

Pérez, A., Rojas, J., Fuentes, J. 2010. Diversidad de bacterias endófitas asociadas a raíces del pasto colosuana (Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Acta biológica Colombiana, 15(2): 219 – 228. DOI: https://doi.org/10.24188/recia.v2.n1.2010.331

Pérez-Cordero, A., Tuberquia-Sierra, A., Amell-Jímenez, D. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agronomía Mesoamericana, 213-223. DOI: https://doi.org/10.15517/am.v25i2.15425

Radzki, W., Mañero, F. G., Algar, E., García, J. L., García-Villaraco, A., Solano, B. R. 2013. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3): 321-330. DOI: https://doi.org/10.1007/s10482-013-9954-9

Ribeiro, A. F., Andrade, E. H. A., Salimena, F. R. G., Maia, J. G. S. 2014. Circadian and seasonal study of the cinnamate chemotype from Lippia origanoides Kunth. Biochemical Systematics and Ecology, 55: 249-259. DOI: https://doi.org/10.1016/j.bse.2014.03.014

Rubio, L. M., Ludden, P. W. 2005. Maturation of nitrogenase: a biochemical puzzle. Journal of Bacteriology, 187(2): 405-414. DOI: https://doi.org/10.1128/JB.187.2.405-414.2005

Ruiz, C., Tunarosa, F., Martínez, J., Stashenko, E. 2007. Estudio comparativo por GC-MS de metabolitos secundarios volátiles de dos quimiotipos de Lippia origanoides HBK, obtenidos por diferentes técnicas de extracción. Scientia et technica, 1(33).

Schwyn, B., Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1): 47-56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9

Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., Wang-Pruski, G. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 55(3):1187-1192. DOI: https://doi.org/10.1099/ijs.0.63149-0

Stashenko, E., Ruiz, C., Muñoz, A., Castañeda, M., Martínez, J. 2008. Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Natural Product Communications, 3(4): 1934578X0800300417. DOI: https://doi.org/10.1177/1934578X0800300417

Sun Y., Cheng, Z., Glick, B. R. 2009. The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS microbiology letters, 296(1):131-136. DOI: https://doi.org/10.1111/j.1574-6968.2009.01625.x

Cómo citar

APA

Chamorro Anaya, L. M., Chamorro Anaya, L. M. y Perez Cordero, A. (2020). Bacillus cereus bacteria endófita promotora de crecimiento vegetal. Revista Colombiana de Biotecnología, 22(2), 18–23. https://doi.org/10.15446/rev.colomb.biote.v22n2.81723

ACM

[1]
Chamorro Anaya, L.M., Chamorro Anaya, L.M. y Perez Cordero, A. 2020. Bacillus cereus bacteria endófita promotora de crecimiento vegetal. Revista Colombiana de Biotecnología. 22, 2 (jul. 2020), 18–23. DOI:https://doi.org/10.15446/rev.colomb.biote.v22n2.81723.

ACS

(1)
Chamorro Anaya, L. M.; Chamorro Anaya, L. M.; Perez Cordero, A. Bacillus cereus bacteria endófita promotora de crecimiento vegetal. Rev. colomb. biotecnol. 2020, 22, 18-23.

ABNT

CHAMORRO ANAYA, L. M.; CHAMORRO ANAYA, L. M.; PEREZ CORDERO, A. Bacillus cereus bacteria endófita promotora de crecimiento vegetal. Revista Colombiana de Biotecnología, [S. l.], v. 22, n. 2, p. 18–23, 2020. DOI: 10.15446/rev.colomb.biote.v22n2.81723. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/81723. Acesso em: 10 jul. 2024.

Chicago

Chamorro Anaya, Lina Maria, Leonado Miguel Chamorro Anaya, y Alexander Perez Cordero. 2020. «Bacillus cereus bacteria endófita promotora de crecimiento vegetal». Revista Colombiana De Biotecnología 22 (2):18-23. https://doi.org/10.15446/rev.colomb.biote.v22n2.81723.

Harvard

Chamorro Anaya, L. M., Chamorro Anaya, L. M. y Perez Cordero, A. (2020) «Bacillus cereus bacteria endófita promotora de crecimiento vegetal», Revista Colombiana de Biotecnología, 22(2), pp. 18–23. doi: 10.15446/rev.colomb.biote.v22n2.81723.

IEEE

[1]
L. M. Chamorro Anaya, L. M. Chamorro Anaya, y A. Perez Cordero, «Bacillus cereus bacteria endófita promotora de crecimiento vegetal», Rev. colomb. biotecnol., vol. 22, n.º 2, pp. 18–23, jul. 2020.

MLA

Chamorro Anaya, L. M., L. M. Chamorro Anaya, y A. Perez Cordero. «Bacillus cereus bacteria endófita promotora de crecimiento vegetal». Revista Colombiana de Biotecnología, vol. 22, n.º 2, julio de 2020, pp. 18-23, doi:10.15446/rev.colomb.biote.v22n2.81723.

Turabian

Chamorro Anaya, Lina Maria, Leonado Miguel Chamorro Anaya, y Alexander Perez Cordero. «Bacillus cereus bacteria endófita promotora de crecimiento vegetal». Revista Colombiana de Biotecnología 22, no. 2 (julio 1, 2020): 18–23. Accedido julio 10, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/81723.

Vancouver

1.
Chamorro Anaya LM, Chamorro Anaya LM, Perez Cordero A. Bacillus cereus bacteria endófita promotora de crecimiento vegetal. Rev. colomb. biotecnol. [Internet]. 1 de julio de 2020 [citado 10 de julio de 2024];22(2):18-23. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/81723

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

948

Descargas

Los datos de descargas todavía no están disponibles.