Publicado

2022-02-01

On Li-Yorke chaotic transformation groups modulo an ideal

Sobre grupos de transformación caóticos Li--Yorke módulo un ideal

Palabras clave:

Fort space, Ideal, Li-Yorke chaos, Transformation semigroup (en)
espacios de Fort, ideales, Caos Li--Yorke, Semigrupo de transformaciones (es)

Descargas

Autores/as

  • Mehrnaz Pourattar Islamic Azad University
  • Fatemah Ayatollah Zadeh Shirazi University of Tehran

In the following text we introduce the notion of chaoticity modulo an ideal in the sense of Li-Yorke in topological transformation semigroups and bring some of its elementary properties. We continue our study by characterizing a class of abelian infinite Li-Yorke chaotic Fort transformation groups and show all of the elements of the above class is co-decomposable to non-Li-Yorke chaotic transformation groups.

En el siguiente texto definimos el concepto de caoticidad módulo un ideal en el sentido de Li--Yorke en semigrupos de transformación topológicos y presentamos algunas de sus propiedades. Continuamos nuestro estudio caracterizando una clase de grupos de transformación de Fort caóticos Lie-Yorke infinitos abelianos y mostrando que todos los elementos de esta clase dada arriba es co-descomponible a grupos de transformación no Li--Yorke

Referencias

J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334.

T. Ceccherini-Silberstein and M. Coornaert, Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst. 19 (2013), no. 3, 349-357.

X. Dai and X. Tang, Devaney chaos, Li-Yorke chaos, and multi-dimensional Li{Yorke chaos for topological dynamics, J. Differential Equations 263 (2017), no. 9, 5521-5553.

R. L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986.

J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.

R. Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969.

R. Engelking, General topology, 2 ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.

A. I. Gerko, On the disjointness of some types of extensions of topological transformation semigroups, Mat. Zametki 73 (2003), no. 4, 527-544 (Russian), translation in Math. Notes 73 (2003), no. 4, 496-510.

L. Google and M. Megrelishvili, Semigroup actions: proximities, compactifications and normality, Topology Proc. 35 (2010), 37-71.

M. Holz, K. Steffens, and E. Weitz, Introduction to cardinal arithmetic, Birkhauser{Verlag, Basel, 1999.

J. van Mill, On the G-compactications of the rational numbers, Monatsh. Math. 157 (2009), no. 3, 257-266.

Sh. H. Li, !{chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), no. 1, 243-249.

P. Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4901-4925.

S. Ruette and L. Snoha, For graph maps, one scrambled pair implies Li-Yorke chaos, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2087-2100.

M. Sabbaghan, F. Ayatollah Zadeh Shirazi, and A. Hosseini, Co-decomposition of a transformation semigroup, Ukrainian Math. J. 65 (2014), no. 11, 1670-1680.

M. Sabbaghan, K. Tso, and T.-S. Wu, Abelian minimal transformation semigroups, Topology Appl. 60 (1994), no. 3, 201-227.

E. Shah, Devaney's chaos for maps on G-spaces, Taiwanese J. Math. 22 (2018), no. 2, 339-348.

S. Shah and T. Das, On e-chaos, Int. J. Math. Anal. (Ruse) 7 (2013), no. 9-12, 571-578.

F. Ayatollah Zadeh Shirazi, M. A. Mahmoodi, and M. Raeisi, On distality of a transformation semigroup with one point compactification of a discrete space as phase space, Iran. J. Sci. Technol. Trans. A Sci. 40 (2016), no. 4, 209-217.

L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.

H. Wang, X. Long, and H. Fu, Sensitivity and chaos of semigroup actions, Semigroup Forum 84 (2012), no. 1, 81-90.

X. Wang and Y. Huang, Devaney chaos revisited, Topology Appl. 160 (2013), no. 3, 455-460.

Cómo citar

APA

Pourattar, M. & Zadeh Shirazi, F. A. (2020). On Li-Yorke chaotic transformation groups modulo an ideal. Boletín de Matemáticas, 27(1), 25–42. https://revistas.unal.edu.co/index.php/bolma/article/view/101043

ACM

[1]
Pourattar, M. y Zadeh Shirazi, F.A. 2020. On Li-Yorke chaotic transformation groups modulo an ideal. Boletín de Matemáticas. 27, 1 (nov. 2020), 25–42.

ACS

(1)
Pourattar, M.; Zadeh Shirazi, F. A. On Li-Yorke chaotic transformation groups modulo an ideal. Bol. Matemáticas 2020, 27, 25-42.

ABNT

POURATTAR, M.; ZADEH SHIRAZI, F. A. On Li-Yorke chaotic transformation groups modulo an ideal. Boletín de Matemáticas, [S. l.], v. 27, n. 1, p. 25–42, 2020. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/101043. Acesso em: 27 dic. 2025.

Chicago

Pourattar, Mehrnaz, y Fatemah Ayatollah Zadeh Shirazi. 2020. «On Li-Yorke chaotic transformation groups modulo an ideal». Boletín De Matemáticas 27 (1):25-42. https://revistas.unal.edu.co/index.php/bolma/article/view/101043.

Harvard

Pourattar, M. y Zadeh Shirazi, F. A. (2020) «On Li-Yorke chaotic transformation groups modulo an ideal», Boletín de Matemáticas, 27(1), pp. 25–42. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/101043 (Accedido: 27 diciembre 2025).

IEEE

[1]
M. Pourattar y F. A. Zadeh Shirazi, «On Li-Yorke chaotic transformation groups modulo an ideal», Bol. Matemáticas, vol. 27, n.º 1, pp. 25–42, nov. 2020.

MLA

Pourattar, M., y F. A. Zadeh Shirazi. «On Li-Yorke chaotic transformation groups modulo an ideal». Boletín de Matemáticas, vol. 27, n.º 1, noviembre de 2020, pp. 25-42, https://revistas.unal.edu.co/index.php/bolma/article/view/101043.

Turabian

Pourattar, Mehrnaz, y Fatemah Ayatollah Zadeh Shirazi. «On Li-Yorke chaotic transformation groups modulo an ideal». Boletín de Matemáticas 27, no. 1 (noviembre 23, 2020): 25–42. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/101043.

Vancouver

1.
Pourattar M, Zadeh Shirazi FA. On Li-Yorke chaotic transformation groups modulo an ideal. Bol. Matemáticas [Internet]. 23 de noviembre de 2020 [citado 27 de diciembre de 2025];27(1):25-42. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/101043

Descargar cita

Visitas a la página del resumen del artículo

122

Descargas

Los datos de descargas todavía no están disponibles.