Publicado
On Li-Yorke chaotic transformation groups modulo an ideal
Sobre grupos de transformación caóticos Li--Yorke módulo un ideal
Palabras clave:
Fort space, Ideal, Li-Yorke chaos, Transformation semigroup (en)espacios de Fort, ideales, Caos Li--Yorke, Semigrupo de transformaciones (es)
Descargas
In the following text we introduce the notion of chaoticity modulo an ideal in the sense of Li-Yorke in topological transformation semigroups and bring some of its elementary properties. We continue our study by characterizing a class of abelian infinite Li-Yorke chaotic Fort transformation groups and show all of the elements of the above class is co-decomposable to non-Li-Yorke chaotic transformation groups.
En el siguiente texto definimos el concepto de caoticidad módulo un ideal en el sentido de Li--Yorke en semigrupos de transformación topológicos y presentamos algunas de sus propiedades. Continuamos nuestro estudio caracterizando una clase de grupos de transformación de Fort caóticos Lie-Yorke infinitos abelianos y mostrando que todos los elementos de esta clase dada arriba es co-descomponible a grupos de transformación no Li--Yorke
Referencias
J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334.
T. Ceccherini-Silberstein and M. Coornaert, Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst. 19 (2013), no. 3, 349-357.
X. Dai and X. Tang, Devaney chaos, Li-Yorke chaos, and multi-dimensional Li{Yorke chaos for topological dynamics, J. Differential Equations 263 (2017), no. 9, 5521-5553.
R. L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986.
J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.
R. Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969.
R. Engelking, General topology, 2 ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
A. I. Gerko, On the disjointness of some types of extensions of topological transformation semigroups, Mat. Zametki 73 (2003), no. 4, 527-544 (Russian), translation in Math. Notes 73 (2003), no. 4, 496-510.
L. Google and M. Megrelishvili, Semigroup actions: proximities, compactifications and normality, Topology Proc. 35 (2010), 37-71.
M. Holz, K. Steffens, and E. Weitz, Introduction to cardinal arithmetic, Birkhauser{Verlag, Basel, 1999.
J. van Mill, On the G-compactications of the rational numbers, Monatsh. Math. 157 (2009), no. 3, 257-266.
Sh. H. Li, !{chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), no. 1, 243-249.
P. Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4901-4925.
S. Ruette and L. Snoha, For graph maps, one scrambled pair implies Li-Yorke chaos, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2087-2100.
M. Sabbaghan, F. Ayatollah Zadeh Shirazi, and A. Hosseini, Co-decomposition of a transformation semigroup, Ukrainian Math. J. 65 (2014), no. 11, 1670-1680.
M. Sabbaghan, K. Tso, and T.-S. Wu, Abelian minimal transformation semigroups, Topology Appl. 60 (1994), no. 3, 201-227.
E. Shah, Devaney's chaos for maps on G-spaces, Taiwanese J. Math. 22 (2018), no. 2, 339-348.
S. Shah and T. Das, On e-chaos, Int. J. Math. Anal. (Ruse) 7 (2013), no. 9-12, 571-578.
F. Ayatollah Zadeh Shirazi, M. A. Mahmoodi, and M. Raeisi, On distality of a transformation semigroup with one point compactification of a discrete space as phase space, Iran. J. Sci. Technol. Trans. A Sci. 40 (2016), no. 4, 209-217.
L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.
H. Wang, X. Long, and H. Fu, Sensitivity and chaos of semigroup actions, Semigroup Forum 84 (2012), no. 1, 81-90.
X. Wang and Y. Huang, Devaney chaos revisited, Topology Appl. 160 (2013), no. 3, 455-460.



