Publicado

2025-06-25

Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna

Técnicas de forcing para Cichon Maximal: Notas de un mini-curso en la Universidad de Viena

DOI:

https://doi.org/10.15446/bol.mat.v31n1.121155

Palabras clave:

cardinal characteristics of the continuum, Cichon’s diagram, Tukey connections, forcing iteration theory, forcing iterations with ultrafilters and measures, Boolean ultrapowers, forcing intersection with submodels (en)
cardinales característicos del continuo, diagrama de Cichon, conexiones de Tukey, teoría de forcing iterado, orcing iterado con ultrafiltros y medidas, ultrapotencias booleanas, intersección de forcing con submodelos (es)

Descargas

Autores/as

  • Diego A. Mejia Kobe University

Cichon’s diagram describes the connections between combinatorial notions related to measure, category, and compactness of sets of irrational numbers. In the second part of the 2010’s, Goldstern, Kellner and Shelah constructed a forcing model of Cichon’s Maximum (meaning that all nondependent cardinal characteristics are pairwise different) by using large cardinals. Some years later, we eliminated this large cardinal assumption. In this mini-course, we explore the forcing techniques to construct the Cichon’s Maximum model and much more.

El diagrama de Cichon describe las conexiones entre nociones combinatorias relacionadas con medida, categoría y compacidad de conjuntos de irracionales. En la segunda mitad de la década del 2010, Goldstern, Kellner y Shelah construyeron un modelo de forcing de Cichon Maximal (i.e. los valores no dependientes de los cardinales característicos del diagrama de Cichon son diferentes dos a dos) usando grandes cardinales. Algunos años más tarde, eliminamos la hipótesis de grandes cardinales. En este mini-curso, exploramos las técnicas de forcing para construir el modelo de Cichon Maximal y mucho más.

Referencias

[1] B. Balcar, F. Hernández-Hernández, and M. Hrusák. Combinatorics of dense subsets of the rationals. Fund. Math., 183(1):59-80, 2004.

[2] Tomek Bartoszynski. Additivity of measure implies additivity of category. Trans. Amer. Math. Soc., 281(1):209-213, 1984.

[3] Tomek Bartoszy´nski. Combinatorial aspects of measure and category. Fund. Math., 127(3):225-239, 1987.

[4] Tomek Bartoszy´nski and Saharon Shelah. Closed measure zero sets. Ann. Pure Appl. Logic, 58(2):93-110, 1992.

[5] Tomek Bartoszy´nski and Haim Judah. Set theory. On the structure of the real line. A K Peters, Ltd., Wellesley, MA, 1995.

[6] Tomek Bartoszynski. Invariants of measure and category. In Handbook of set theory. Vols. 1, 2, 3, pages 491-555. Springer, Dordrecht, 2010.

[7] Andreas Blass. Applications of superperfect forcing and its relatives. In Set theory and its applications (Toronto, ON, 1987), volume 1401 of Lecture Notes in Math., pages 18-40. Springer, Berlin, 1989.

[8] Andreas Blass. Combinatorial cardinal characteristics of the continuum. In Handbook of set theory. Vols. 1, 2, 3, pages 395-489. Springer, Dordrecht, 2010.

[9] Jörg Brendle. Larger cardinals in Cichon’s diagram. J. Symbolic Logic, 56(3):795-810, 1991.

[10] Jörg Brendle. Aspects of iterated forcing: the Hejnice lectures. Lecture Notes, pages 1-19, 2010.

[11] Jörg Brendle and Dilip Raghavan. Bounding, splitting, and almost disjointness. Ann. Pure Appl. Logic, 165(2):631-651, 2014.

[12] Jörg Brendle, Miguel A. Cardona, and Diego A. Mejía. Filter-linkedness and its effect on preservation of cardinal characteristics. Ann. Pure Appl. Logic, 172(1):102856, 2021.

[13] Miguel A. Cardona and Diego A. Mejía. On cardinal characteristics of Yorioka ideals. Math. Log. Q., 65(2):170-199, 2019.

[14] Miguel A. Cardona and Diego A. Mejía. Forcing constellations of Cichon’s diagram by using the Tukey order. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 2213:14-47, 2022. arXiv:2203.00615.

[15] Miguel A. Cardona and Diego A. Mejía. Localization and anti-localization cardinals. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 2261:47-77, 2023. arXiv:2305.03248.

[16] Miguel A. Cardona. Controlling the uniformity of the ideal generated by the Fσ measure zero subsets of the reals. Talk at the RIMS Set Theory Workshop Large Cardinals and the Continuum, Kyoto University, 2023. https://tenasaku.com/RIMS2023/slides/cardona-rims2023.pdf

[17] Miguel A. Cardona. The cardinal characteristics of the ideal generated by the Fσ measure zero subsets of the reals. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 2290:18-42, 2024. arXiv:2402.04984.

[18] Miguel A. Cardona, Diego A. Mejía, and Andrés Uribe-Zapata. A general theory of iterated forcing using finitely additive measures. Preprint, arXiv:2406.09978, 2024.

[19] Miguel A. Cardona and Diego A. Mejía. More about the cofinality and the covering of the ideal of strong measure zero sets. Ann. Pure Appl. Logic, 176(4):103537, 2025.

[20] Alan Dow and Saharon Shelah. On the cofinality of the splitting number. Indag. Math. (N.S.), 29(1):382-395, 2018.

[21] Ryszard Engelking and Monika Kar lowicz. Some theorems of set theory and their topological consequences. Fund. Math., 57:275-285, 1965.

[22] David H Fremlin. Cichon’s diagram. Publ. Math. Univ. Pierre Marie Curie, 66:1–13, 1983.

[23] Viera Gavalová and Diego Alejandro Mejía. Lebesgue measure zero modulo ideals on the natural numbers. JSL, pages 1-31, 2023. Accepted, doi:10.1017/jsl.2023.97 arXiv:2212.05185.

[24] Martin Goldstern, Diego Alejandro Mejía, and Saharon Shelah. The left side of Cichon’s diagram. Proc. Amer. Math. Soc., 144(9):4025-4042, 2016.

[25] Martin Goldstern, Jakob Kellner, and Saharon Shelah. Cichon’s maximum. Ann. of Math. (2), 190(1):113-143, 2019.

[26] Martin Goldstern, Jakob Kellner, Diego A. Mejía, and Saharon Shelah. Controlling cardinal characteristics without adding reals. J. Math. Log., 21(3):2150018, 2021.

[27] Martin Goldstern, Jakob Kellner, Diego A. Mejía, and Saharon Shelah. Preservation of splitting families and cardinal characteristics of the continuum. Israel J. Math., 246(1):73-129, 2021.

[28] Martin Goldstern, Jakob Kellner, Diego A. Mejía, and Saharon Shelah. Cichon’s maximum without large cardinals. J. Eur. Math. Soc. (JEMS), 24(11):3951-3967, 2022.

[29] Martin Goldstern, Jakob Kellner, Diego A. Mejía, and Saharon Shelah. Controlling classical cardinal characteristics while collapsing cardinals. Colloq. Math., 170(1):115-144, 2022.

[30] Haim Horowitz and Saharon Shelah. Saccharinity with ccc. Preprint, arXiv:1610.02706, 2016.

[31] Haim Judah and Saharon Shelah. The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing). J. Symbolic Logic, 55(3):909-927, 1990.

[32] Haim Judah and Saharon Shelah. Adding dominating reals with the random algebra. Proc. Amer. Math. Soc., 119(1):267-273, 1993.

[33] Anastasis Kamburelis. Iterations of Boolean algebras with measure. Arch. Math. Logic, 29(1):21-28, 1989.

[34] Alexander S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

[35] J. L. Kelley. Measures on Boolean algebras. Pacific J. Math., 9:1165-1177, 1959.

[36] Jakob Kellner, Anda Ramona T˘anasie, and Fabio Elio Tonti. Compact cardinals and eight values in Cicho´n’s diagram. J. Symb. Log., 83(2):790-803, 2018.

[37] Jakob Kellner, Saharon Shelah, and Anda R. Tanasie. Another ordering of the ten cardinal characteristics in Cichon’s diagram. Comment. Math. Univ. Carolin., 60(1):61-95, 2019.

[38] Jakob Kellner. Adding the evasion number to Cichon’s Maximum. XVI International Luminy Workshop in Set Theory, 2021. https://dmg.tuwien.ac.at/kellner/2021_Luminy_talk.pdf

[39] Azriel Levy. Basic set theory. Dover Publications, Inc., Mineola, NY, 2002. Reprint of the 1979 original [Springer, Berlin].

[40] M. Malliaris and S. Shelah. Cofinality spectrum theorems in model theory, set theory, and general topology. J. Amer. Math. Soc., 29(1):237-297, 2016.

[41] Diego Alejandro Mej´ıa. Matrix iterations and Cichon’s diagram. Arch. Math. Logic, 52(3-4):261-278, 2013.

[42] Diego A. Mejía. Matrix iterations with vertical support restrictions. In Proceedings of the 14th and 15th Asian Logic Conferences, pages 213-248. World Sci. Publ., Hackensack, NJ, 2019.

[43] Diego A. Mejía. Anatomy of E. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 2290:43-61, 2024. arXiv:2402.04706.

[44] Diego A. Mejía and Andrés F. Uribe-Zapata. The measure algebra adding θ-many random reals is θ-FAM-linked. Topology Appl., 2025. doi:10.1016/j.topol.2025.109371.

[45] Arnold W. Miller. Some properties of measure and category. Trans. Amer. Math. Soc., 266(1):93-114, 1981.

[46] Arnold W. Miller. A characterization of the least cardinal for which the Baire category theorem fails. Proc. Amer. Math. Soc., 86(3):498-502, 1982.

[47] Janusz Pawlikowski. Adding dominating reals with ωω bounding posets. J. Symbolic Logic, 57(2):540-547, 1992.

[48] Assaf Rinot. The Engelking-Kar lowicz Theorem, and a useful corollary. Personal blog, Sep. 29, 2012. https://blog.assafrinot.com/?p=2054.

[49] Saharon Shelah. Covering of the null ideal may have countable cofinality. Fund. Math., 166(1-2):109-136, 2000.

[50] Andrés F. Uribe-Zapata. Iterated forcing with finitely additive measures: applications of probability to forcing theory. Master’s thesis, Universidad Nacional de Colombia, sede Medellín, 2023. https://sites.google.com/view/andres-uribe-afuz/publications.

[51] Peter Vojtás. Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis. In Set theory of the reals (Ramat Gan, 1991), volume 6 of Israel Math. Conf. Proc., pages 619-643. Bar-Ilan Univ., Ramat Gan, 1993.

[52] Takashi Yamazoe. Cichon’s maximum with evasion number. JSL, 2025. doi: 10.1017/jsl.2024.65.

[53] Jindrich Zapletal. Dimension theory and forcing. Topology Appl., 167:31-35, 2014.

Cómo citar

APA

Mejia, D. A. (2025). Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna. Boletín de Matemáticas, 31(1). https://doi.org/10.15446/bol.mat.v31n1.121155

ACM

[1]
Mejia, D.A. 2025. Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna. Boletín de Matemáticas. 31, 1 (jun. 2025). DOI:https://doi.org/10.15446/bol.mat.v31n1.121155.

ACS

(1)
Mejia, D. A. Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna. Bol. Matemáticas 2025, 31.

ABNT

MEJIA, D. A. Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna. Boletín de Matemáticas, [S. l.], v. 31, n. 1, 2025. DOI: 10.15446/bol.mat.v31n1.121155. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/121155. Acesso em: 27 dic. 2025.

Chicago

Mejia, Diego A. 2025. «Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna». Boletín De Matemáticas 31 (1). https://doi.org/10.15446/bol.mat.v31n1.121155.

Harvard

Mejia, D. A. (2025) «Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna», Boletín de Matemáticas, 31(1). doi: 10.15446/bol.mat.v31n1.121155.

IEEE

[1]
D. A. Mejia, «Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna», Bol. Matemáticas, vol. 31, n.º 1, jun. 2025.

MLA

Mejia, D. A. «Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna». Boletín de Matemáticas, vol. 31, n.º 1, junio de 2025, doi:10.15446/bol.mat.v31n1.121155.

Turabian

Mejia, Diego A. «Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna». Boletín de Matemáticas 31, no. 1 (junio 25, 2025). Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/121155.

Vancouver

1.
Mejia DA. Forcing techniques for Cichon’s Maximum: Lecture notes for the mini-course at the University of Vienna. Bol. Matemáticas [Internet]. 25 de junio de 2025 [citado 27 de diciembre de 2025];31(1). Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/121155

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

157

Descargas

Los datos de descargas todavía no están disponibles.