Publicado
Categoricity and amalgamation for AEC, and κ measurable
Categoricidad y amalgamación para clases elementales abstractas, y κ medible
DOI:
https://doi.org/10.15446/bol.mat.v31n1.122442Palabras clave:
Model theory, abstract elementary classes, AEC, categoricity, infinitary logic, amalgamation (en)teoría de modelos, clases elementales abstractas, AEC, categoricidad, lógica infinitaria, amalgamació (es)
Descargas
In the original version of this paper, we assume a theory T in the logic Lκ,ℵ0 is categorical in a cardinal λ > κ, and κ is a measurable cardinal. There we prove that the class of models of T of cardinality < λ but ≥ |T| + κ has the amalgamation property under a natural order; this is a step toward understanding the character of such classes of models.
In this revised version we replaced the class of models of T by k, an AEC (abstract elementary class) which has LST-number <κ, or at least which behaves nicely for ultra-powers by D, some normal ultra-filter on κ or just LST+k -complete non-principal ultra-filters on κ.
Presently sub-section §2A deals with T ⊆ Lκ+,ℵ0 (and so does a large part of the introduction and little in the rest of §2), but otherwise, all is done in the context of AEC.
The reader may in the first reading for transparency fix D, a normal ultrafilter on the measurable cardinal κ and either fix the T ⊆ Lκ,ℵ0 or fix an AEC k with LSTk < κ.
We leave the original introduction adding a few comments at the end, after the three stars.
En la versión original de este artículo, suponemos que una teoría T en la lógica Lκ,ℵ0 es categórica en un cardinal λ > κ, y que κ es un cardinal medible. Allí demostramos que la clase de modelos de T de cardinalidad < λ con ≥ |T|+κ tiene la propiedad de amalgamación bajo un orden natural; este es un paso hacia la comprensión del carácter de dichas clases de modelos.
En esta versión revisada, reemplazamos la clase de modelos de T por k, una AEC (clase elemental abstracta) que tiene número de Löwenheim-Skolem-Tarski < κ, o al menos que se comporta bien para ultrapotencias por D, algún ultrafiltro normal sobre κ o simplemente ultrafiltros no principales LST+k - completos sobre κ.
Actualmente, la subsección §2A trata con T ⊆ Lκ+,aleph0 (y también una gran parte de la introducción y poco en el resto del §2), pero por lo demás, todo se hace en el contexto de las AEC.
Para una primera lectura, y en aras de la transparencia, el lector puede fijar D un ultrafiltro normal sobre el cardinal medible κ, y bien fijar T ⊆ Lκ,ℵ0 o bien fijar una AEC k con LSTk < κ
Dejamos la introducción original añadiendo algunos comentarios al final, después de los tres asteriscos.
Referencias
[1] J. Baldwin, Categoricity, University Lecture Series, vol. 50, American Mathematical Society, Providence, RI, 2009.
[2] C. Ch. Chen and H. J. Keisler, Model theory, Studies in Logic and the Foundation of Math., vol. 73, North-Holland Publishing Co., Amsterdam, 1973.
[3] M. A. Dickman, Larger infinitary languages, Model Theoretic Logics (J. Barwise and S. Feferman, eds.), Perspectives in Mathematical Logic, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1985, pp. 317-364.
[4] M. A. Dickmann, Large infinitary languages, Studies in Logic and the Foundations of Mathematics, Vol. 83, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975, Model theory.
[5] B. T. Hart and S. Shelah, Categoricity over P for first order T or categoricity for ϕ ∈ Lω1ω can stop at ℵk while holding for ℵ0, · · · , ℵk-1, Israel J. Math. 70 (1990), no. 2, 219-235, arXiv: math/9201240.
[6] W. Hodges and S. Shelah, Infinite games and reduced products, Ann. Math. Logic 20 (1981), no. 1, 77-108.
[7] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded.
[8] H. J. Keisler, Model theory for infinitary logic. logic with countable conjunctions and finite quantifiers, Studies in Logic and the Foundations of Mathematics, vol. 62, North-Holland Publishing Co., Amsterdam-London, 1971.
[9] O. Kolman and S. Shelah, Categoricity of theories in Lκω, when κ is a measurable cardinal. I, Fund. Math. 151 (1996), no. 3, 209-240, arXiv: math/9602216.
[10] R. Laver, On fraissé's order type conjecture, Annals of Mathematics 93 (1971), 89-111.
[11] M. Makkai and S. Shelah, Categoricity of theories in Lκω, with κ a compact cardinal, Ann. Pure Appl. Logic 47 (1990), no. 1, 41-97.
[12] M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514-538.
[13] M. Nadel, ↕ω1ω and admissible fragments, Model Theoretic Logics (J. Barwise and S. Feferman, eds.), Perspectives in Mathematical Logic, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1985, pp. 271-316.
[14] J. P. Ressayre, Sur les th´eories du premier ordre cat´egoriques en un cardinal, Trans. Amer. Math. Soc. 142 (1969), 481-505.
[15] F. Rowbottom, The Los Conjecture for uncountable theories, Notices of the AMS 64 (1964), no. 2, 248, 64T-197.
[16] S. Shelah, Combinatorial background for Non-structure, arXiv: 1512.04767 Appendix of [Sh:e].
[17] S. Shelah, Note on a min-max problem of Leo Moser, J. Combinatorial Theory 6 (1969), 298-300.
[18] S. Shelah, Categoricity of uncountable theories, Proceedings of the Tarski Symposium, Proc. Sympos. Pure Math., vol. XXV, Amer. Math. Soc., Providence, R.I., 1974, pp. 187-203.
[19] S. Shelah, Categoricity in ℵ1 of sentences in Lω1,ω(Q), Israel J. Math. 20 (1975), no. 2, 127-148.
[20] S. Shelah, Classification theory and the number of nonisomorphic models, Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam-New York, 1978.
[21] S. Shelah, Classification theory for nonelementary classes. I. The number of uncountable models of ψ ∈ Lω1,ω. Part A, Israel J. Math. 46 (1983), no. 3, 212-240.
[22] S. Shelah, Classification theory for nonelementary classes. I. The number of uncountable models of ψ ∈ Lω1,ω. Part B, Israel J. Math. 46 (1983), no. 4, 241-273.
[23] S. Shelah, Classification of nonelementary classes. II. Abstract elementary classes, Classification theory (Chicago, IL, 1985), Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 419-497.
[24] S. Shelah, Existence of many L∞,λ-equivalent, nonisomorphic models of T of power λ, Ann. Pure Appl. Logic 34 (1987), no. 3, 291-310.
[25] S. Shelah, Universal classes, Classification theory (Chicago, IL, 1985), Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 264-418.
[26] S. Shelah, Classification theory and the number of nonisomorphic models, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990, Revised edition of [Sh:a].
[27] S. Shelah, Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, arXiv: 0708.1979, pp. 355-383.
[28] S. Shelah, Proper and improper forcing, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998.
[29] S. Shelah, Categoricity for abstract classes with amalgamation, Ann. Pure Appl. Logic 98 (1999), no. 1-3, 261–294, arXiv: math/9809197.
[30] S. Shelah, Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math. 126 (2001), 29-128, arXiv: math/9805146.
[31] S. Shelah, Categoricity of theories in Lκ∗,ω, when κ∗ is a measurable cardinal. II, Fund. Math. 170 (2001), no. 1-2, 165-196, arXiv: math/9604241.
[32] S. Shelah, Abstract elementary classes near ℵ1, Classification theory for abstract elementary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009, arXiv: 0705.4137 Ch. I of [Sh:h], pp. vi+813.
[33] S. Shelah, Categoricity in abstract elementary classes: going up inductively, 2009, arXiv: math/0011215 Ch. II of [Sh:h].
[34] S. Shelah, Classification theory for abstract elementary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009.
[35] S. Shelah, Classification theory for abstract elementary classes, College Publications, London, p. vi+813. MR: 2643267 18 (2009), arXiv: 0903.3428.
[36] S. Shelah and S. Vasey, Categoricity and multidimensional diagrams, arXiv: 1805.06291.



