Publicado

2026-02-17

On geometric forms for Cauchy’s and Flett’s mean value theorems

Sobre formas geométricas de los teorema del valor medio de Cauchy y de Flett

DOI:

https://doi.org/10.15446/bol.mat.v32n1.125632

Palabras clave:

Cauchy’s mean value theorem, Flett’s theorem, Wachnicki’s theorem, differentiable curves (en)
Teorema del valor medio de Cauchy, teorema de Flett, teorema de Wachnicki, curvas diferenciables (es)

Descargas

Autores/as

  • Sergio A. Carrillo Universidad Nacional de Colombia

We give two mean value type theorems for differentiable curves in the Euclidean space. These unify several versions of Cauchy’s and Flett’s mean value theorems and provide equivalent geometric statements to their classical counterparts. We also discuss some particular cases for curves in two and three dimensions, and some related results

Presentamos dos teoremas del valor medio para curvas diferenciables en el espacio euclidiano. Estos unifican varias versiones de los teoremas del valor medio de Cauchy y Flett y proporcionan enunciados geométricos equivalentes a sus contrapartes clásicas. También analizamos algunos casos particulares para curvas en dos y tres dimensiones, y algunos resultados relacionados.

Referencias

[1] Alexander Abian, Generalizing the generalized mean-value theorem, The American Mathematical Monthly 88 (1981), no. 7, 528-530.

[2] Lazhar Bougoffa, A generalization of Wayment’s mean value theorem for integrals, The American Mathematical Monthly 131 (2024), no. 7, 624-626.

[3] André Pierro de Camargo, A new proof of the equivalence of the Cauchy mean value theorem and the mean value theorem, The American Mathematical Monthly 127 (2020), no. 5, 460-460.

[4] Jean Alexandre Eugène Dieudonné, Foundations of Modern Analysis, vol. 10, Academic Press, Inc., New York, 1969.

[5] Jean-Claude Evard and Farhad Jafari, A complex Rolle’s theorem, The American Mathematical Monthly 99 (1992), no. 9, 858-861.

[6] Thomas Muirhead Flett, 2742. A mean value theorem, The Mathematical Gazette 42 (1958), no. 339, 38-39.

[7] Thomas Muirhead Flett, 2742. Mean value theorems for vector-valued functions, Tohoku Mathematical Journal 24 (1972), no. 2, 141-151.

[8] William S. Hall and Martin L. Newell, The mean value theorem for vector valued functions: A simple proof, Mathematics Magazine 52 (1979), no. 3, 157-158.

[9] Mircea Ivan, A note on a Cauchy-type mean value theorem, Demonstratio Mathematica 35 (2002), no. 3, 493-494.

[10] Liaqat Ali Khan, Mean value theorem in topological vector spaces, C. R. Math. Acad. Sci., Soc. R. Can. 19 (1997), no. 1, 24-27 (English).

[11] German Lozada-Cruz, Some variants of Cauchy’s mean value theorem, International Journal of Mathematical Education in Science and Technology 51 (2020), no. 7, 1155-1163.

[12] Peter R. Mercer, More Calculus of a single variable, UTM, Springer, New York, NY, 2014.

[13] Cristinel Mortici, Funny forms of the mean value theorem, The American Mathematical Monthly 122 (2015), no. 8, 780-780.

[14] Robert C. Powers, Thomas Riedel, and Prasanna K. Sahoo, Flett’s mean value theorem in topological vector spaces, International Journal of Mathematics and Mathematical Sciences 27 (2001), 1-6.

[15] Walter Rudin, Principles of Mathematical Analysis (3rd ed.), McGraw-Hill, New York, NY, 1976.

[16] D. E. Sanderson, A versatile vector mean value theorem, The American Mathematical Monthly 79 (1972), no. 4, 381-383.

[17] J. Tong, Cauchy’s mean value theorem involving n functions. in: Classroom capsules, The College Mathematics Journal 35 (2004), no. 1, 43-54.

[18] Eugeniusz Wachnicki, Une variante du théorème de Cauchy de la valeur moyenne, Demonstratio Mathematica 33 (2000), no. 4, 737-740.

[19] Stanley G. Wayment, 3274. An integral mean value theorem, The Mathematical Gazette 54 (1970), no. 389, 300-301.

Cómo citar

APA

Carrillo, S. A. (2026). On geometric forms for Cauchy’s and Flett’s mean value theorems. Boletín de Matemáticas, 32(1). https://doi.org/10.15446/bol.mat.v32n1.125632

ACM

[1]
Carrillo, S.A. 2026. On geometric forms for Cauchy’s and Flett’s mean value theorems. Boletín de Matemáticas. 32, 1 (feb. 2026). DOI:https://doi.org/10.15446/bol.mat.v32n1.125632.

ACS

(1)
Carrillo, S. A. On geometric forms for Cauchy’s and Flett’s mean value theorems. Bol. Matemáticas 2026, 32.

ABNT

CARRILLO, S. A. On geometric forms for Cauchy’s and Flett’s mean value theorems. Boletín de Matemáticas, [S. l.], v. 32, n. 1, 2026. DOI: 10.15446/bol.mat.v32n1.125632. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/125632. Acesso em: 20 feb. 2026.

Chicago

Carrillo, Sergio A. 2026. «On geometric forms for Cauchy’s and Flett’s mean value theorems». Boletín De Matemáticas 32 (1). https://doi.org/10.15446/bol.mat.v32n1.125632.

Harvard

Carrillo, S. A. (2026) «On geometric forms for Cauchy’s and Flett’s mean value theorems», Boletín de Matemáticas, 32(1). doi: 10.15446/bol.mat.v32n1.125632.

IEEE

[1]
S. A. Carrillo, «On geometric forms for Cauchy’s and Flett’s mean value theorems», Bol. Matemáticas, vol. 32, n.º 1, feb. 2026.

MLA

Carrillo, S. A. «On geometric forms for Cauchy’s and Flett’s mean value theorems». Boletín de Matemáticas, vol. 32, n.º 1, febrero de 2026, doi:10.15446/bol.mat.v32n1.125632.

Turabian

Carrillo, Sergio A. «On geometric forms for Cauchy’s and Flett’s mean value theorems». Boletín de Matemáticas 32, no. 1 (febrero 17, 2026). Accedido febrero 20, 2026. https://revistas.unal.edu.co/index.php/bolma/article/view/125632.

Vancouver

1.
Carrillo SA. On geometric forms for Cauchy’s and Flett’s mean value theorems. Bol. Matemáticas [Internet]. 17 de febrero de 2026 [citado 20 de febrero de 2026];32(1). Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/125632

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

11

Descargas

Los datos de descargas todavía no están disponibles.