Publicado

2007-07-01

NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION

Palabras clave:

Semidiscretizations, localized semilinear parabolic equation, semidiscrete quenching time, convergence. (es)

Descargas

Autores/as

  • Diabate Nabongo Univesité d'Abobo-Adjamé
  • Théodore Boni Institut National Polytechnique Houphouët-Boigny de Yamousoukro
This paper concerns the study of the numerical approximation
for the following initial-boundary value problem:

ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),
u(-l; t) = 0; u(l; t) = 0; t in (0; T),
u(x; 0) = u0(x) >= 0; x in (-l; l),

where p > 1, l = 1/2 and E > 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a nite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally,we give some numerical experiments to illustrate our analysis.

Cómo citar

APA

Nabongo, D. y Boni, T. (2007). NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION. Boletín de Matemáticas, 14(2), 92–109. https://revistas.unal.edu.co/index.php/bolma/article/view/40463

ACM

[1]
Nabongo, D. y Boni, T. 2007. NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION. Boletín de Matemáticas. 14, 2 (jul. 2007), 92–109.

ACS

(1)
Nabongo, D.; Boni, T. NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION. Bol. Matemáticas 2007, 14, 92-109.

ABNT

NABONGO, D.; BONI, T. NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION. Boletín de Matemáticas, [S. l.], v. 14, n. 2, p. 92–109, 2007. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/40463. Acesso em: 10 abr. 2025.

Chicago

Nabongo, Diabate, y Théodore Boni. 2007. «NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION». Boletín De Matemáticas 14 (2):92-109. https://revistas.unal.edu.co/index.php/bolma/article/view/40463.

Harvard

Nabongo, D. y Boni, T. (2007) «NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION», Boletín de Matemáticas, 14(2), pp. 92–109. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40463 (Accedido: 10 abril 2025).

IEEE

[1]
D. Nabongo y T. Boni, «NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION», Bol. Matemáticas, vol. 14, n.º 2, pp. 92–109, jul. 2007.

MLA

Nabongo, D., y T. Boni. «NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION». Boletín de Matemáticas, vol. 14, n.º 2, julio de 2007, pp. 92-109, https://revistas.unal.edu.co/index.php/bolma/article/view/40463.

Turabian

Nabongo, Diabate, y Théodore Boni. «NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION». Boletín de Matemáticas 14, no. 2 (julio 1, 2007): 92–109. Accedido abril 10, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/40463.

Vancouver

1.
Nabongo D, Boni T. NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION. Bol. Matemáticas [Internet]. 1 de julio de 2007 [citado 10 de abril de 2025];14(2):92-109. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40463

Descargar cita

Visitas a la página del resumen del artículo

179

Descargas