Publicado
2007-07-01
AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION
Palabras clave:
Liouville equation, orthonormal system, eigenfunction, strong and weak convergence, mean convergence, Camassa- Holm equation, Hermite functions. (es)Descargas
We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are investigating several expansions and determine their convergence conditions to ensure the convergence of the asymptotic expansion to the solution of the considered problem.
To illustrate the applicability of the introduced asymptotic orthogonal decompositions [18] we took the describing bidimensional integrable dispersive shallow water equation developed by Roberto Camassa and Darryl D. Holm, Los Alamos National Laboratory. Since CH-equation solutions
are represented by a superposition of arbitrary number of peakons (peaked solitons) [9],[16], one can compare the coincidence of the \peakon" solutions character provided by numerical modeling along some trajectories for truncated asymptotic series expansions obtained by symbolic computations.
Cómo citar
APA
Dulov, E. & Sinitsyn, A. (2007). AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Boletín de Matemáticas, 14(2), 129–172. https://revistas.unal.edu.co/index.php/bolma/article/view/40465
ACM
[1]
Dulov, E. y Sinitsyn, A. 2007. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Boletín de Matemáticas. 14, 2 (jul. 2007), 129–172.
ACS
(1)
Dulov, E.; Sinitsyn, A. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Bol. Matemáticas 2007, 14, 129-172.
ABNT
DULOV, E.; SINITSYN, A. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Boletín de Matemáticas, [S. l.], v. 14, n. 2, p. 129–172, 2007. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/40465. Acesso em: 28 dic. 2025.
Chicago
Dulov, Eugene, y Alexandre Sinitsyn. 2007. «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION». Boletín De Matemáticas 14 (2):129-72. https://revistas.unal.edu.co/index.php/bolma/article/view/40465.
Harvard
Dulov, E. y Sinitsyn, A. (2007) «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION», Boletín de Matemáticas, 14(2), pp. 129–172. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40465 (Accedido: 28 diciembre 2025).
IEEE
[1]
E. Dulov y A. Sinitsyn, «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION», Bol. Matemáticas, vol. 14, n.º 2, pp. 129–172, jul. 2007.
MLA
Dulov, E., y A. Sinitsyn. «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION». Boletín de Matemáticas, vol. 14, n.º 2, julio de 2007, pp. 129-72, https://revistas.unal.edu.co/index.php/bolma/article/view/40465.
Turabian
Dulov, Eugene, y Alexandre Sinitsyn. «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION». Boletín de Matemáticas 14, no. 2 (julio 1, 2007): 129–172. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/40465.
Vancouver
1.
Dulov E, Sinitsyn A. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Bol. Matemáticas [Internet]. 1 de julio de 2007 [citado 28 de diciembre de 2025];14(2):129-72. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40465
Descargar cita
Visitas a la página del resumen del artículo
262
Descargas
Los datos de descargas todavía no están disponibles.
Licencia
Derechos de autor 2007 Boletín de Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.


