Publicado

2007-07-01

AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION

Palabras clave:

Liouville equation, orthonormal system, eigenfunction, strong and weak convergence, mean convergence, Camassa- Holm equation, Hermite functions. (es)

Descargas

Autores/as

  • Eugene Dulov Universidad Nacional de Colombia
  • Alexandre Sinitsyn Universidad Nacional de Colombia
We consider an approximate integration method of the Cauchy problem for the generalized Liouville equation using symbolic and numeric computer computations. This method is based on the probability density function orthonormal series expansion in the small and initial time space domains. We are investigating several expansions and determine their convergence conditions to ensure the convergence of the asymptotic expansion to the solution of the considered problem.

To illustrate the applicability of the introduced asymptotic orthogonal decompositions [18] we took the describing bidimensional integrable dispersive shallow water equation developed by Roberto Camassa and Darryl D. Holm, Los Alamos National Laboratory. Since CH-equation solutions
are represented by a superposition of arbitrary number of peakons (peaked solitons) [9],[16], one can compare the coincidence of the \peakon" solutions character provided by numerical modeling along some trajectories for truncated asymptotic series expansions obtained by symbolic computations.

Cómo citar

APA

Dulov, E. & Sinitsyn, A. (2007). AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Boletín de Matemáticas, 14(2), 129–172. https://revistas.unal.edu.co/index.php/bolma/article/view/40465

ACM

[1]
Dulov, E. y Sinitsyn, A. 2007. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Boletín de Matemáticas. 14, 2 (jul. 2007), 129–172.

ACS

(1)
Dulov, E.; Sinitsyn, A. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Bol. Matemáticas 2007, 14, 129-172.

ABNT

DULOV, E.; SINITSYN, A. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Boletín de Matemáticas, [S. l.], v. 14, n. 2, p. 129–172, 2007. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/40465. Acesso em: 27 dic. 2025.

Chicago

Dulov, Eugene, y Alexandre Sinitsyn. 2007. «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION». Boletín De Matemáticas 14 (2):129-72. https://revistas.unal.edu.co/index.php/bolma/article/view/40465.

Harvard

Dulov, E. y Sinitsyn, A. (2007) «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION», Boletín de Matemáticas, 14(2), pp. 129–172. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40465 (Accedido: 27 diciembre 2025).

IEEE

[1]
E. Dulov y A. Sinitsyn, «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION», Bol. Matemáticas, vol. 14, n.º 2, pp. 129–172, jul. 2007.

MLA

Dulov, E., y A. Sinitsyn. «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION». Boletín de Matemáticas, vol. 14, n.º 2, julio de 2007, pp. 129-72, https://revistas.unal.edu.co/index.php/bolma/article/view/40465.

Turabian

Dulov, Eugene, y Alexandre Sinitsyn. «AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION». Boletín de Matemáticas 14, no. 2 (julio 1, 2007): 129–172. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/bolma/article/view/40465.

Vancouver

1.
Dulov E, Sinitsyn A. AN APPROXIMATE ORTHOGONAL DECOMPOSITION METHOD FOR THE SOLUTION OF THE GENERALIZED LIOUVILLE EQUATION. Bol. Matemáticas [Internet]. 1 de julio de 2007 [citado 27 de diciembre de 2025];14(2):129-72. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40465

Descargar cita

Visitas a la página del resumen del artículo

262

Descargas

Los datos de descargas todavía no están disponibles.