Publicado
2010-07-01
Exponential sums, number of solutions of algebraic equations, and Poincaré series
Palabras clave:
Gauss sums, Ramanujan sums, number of solutions of algebraic equations over (es)Descargas
Definitions of Gauss and Ramanujan sums over the algebras A and Lv are given, and their main properties are proved. Using these results an analogous of an old result of Libri on the number of solutions of algebraic equations with integral coecients modulo a prime power is obtained, and then used to compute the number of solutions of some equations with coecients in Lv. Finally, an analogous of a problem of Nageswara Rao on algebraic equations subject to partitions is solved for equations
with coecients in Lv.
Cómo citar
APA
Albis, V. & Carvajal, E. (2010). Exponential sums, number of solutions of algebraic equations, and Poincaré series. Boletín de Matemáticas, 17(2), 165–192. https://revistas.unal.edu.co/index.php/bolma/article/view/40803
ACM
[1]
Albis, V. y Carvajal, E. 2010. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Boletín de Matemáticas. 17, 2 (jul. 2010), 165–192.
ACS
(1)
Albis, V.; Carvajal, E. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Bol. Matemáticas 2010, 17, 165-192.
ABNT
ALBIS, V.; CARVAJAL, E. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Boletín de Matemáticas, [S. l.], v. 17, n. 2, p. 165–192, 2010. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/40803. Acesso em: 13 feb. 2026.
Chicago
Albis, Víctor, y Edilmo Carvajal. 2010. «Exponential sums, number of solutions of algebraic equations, and Poincaré series». Boletín De Matemáticas 17 (2):165-92. https://revistas.unal.edu.co/index.php/bolma/article/view/40803.
Harvard
Albis, V. y Carvajal, E. (2010) «Exponential sums, number of solutions of algebraic equations, and Poincaré series», Boletín de Matemáticas, 17(2), pp. 165–192. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40803 (Accedido: 13 febrero 2026).
IEEE
[1]
V. Albis y E. Carvajal, «Exponential sums, number of solutions of algebraic equations, and Poincaré series», Bol. Matemáticas, vol. 17, n.º 2, pp. 165–192, jul. 2010.
MLA
Albis, V., y E. Carvajal. «Exponential sums, number of solutions of algebraic equations, and Poincaré series». Boletín de Matemáticas, vol. 17, n.º 2, julio de 2010, pp. 165-92, https://revistas.unal.edu.co/index.php/bolma/article/view/40803.
Turabian
Albis, Víctor, y Edilmo Carvajal. «Exponential sums, number of solutions of algebraic equations, and Poincaré series». Boletín de Matemáticas 17, no. 2 (julio 1, 2010): 165–192. Accedido febrero 13, 2026. https://revistas.unal.edu.co/index.php/bolma/article/view/40803.
Vancouver
1.
Albis V, Carvajal E. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Bol. Matemáticas [Internet]. 1 de julio de 2010 [citado 13 de febrero de 2026];17(2):165-92. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40803
Descargar cita
Visitas a la página del resumen del artículo
230
Descargas
Los datos de descargas todavía no están disponibles.
Licencia
Derechos de autor 2010 Boletín de Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.


