Publicado

2010-07-01

Exponential sums, number of solutions of algebraic equations, and Poincaré series

Palabras clave:

Gauss sums, Ramanujan sums, number of solutions of algebraic equations over (es)

Descargas

Autores/as

  • Víctor Albis Universidad Nacional de Colombia
  • Edilmo Carvajal Universidad Central de Venezuela
Definitions of Gauss and Ramanujan sums over the algebras A and Lv are given, and their main properties are proved. Using these results an analogous of an old result of Libri on the number of solutions of algebraic equations with integral coecients modulo a prime power is obtained, and then used to compute the number of solutions of some equations with coecients in Lv. Finally, an analogous of a problem of Nageswara Rao on algebraic equations subject to partitions is solved for equations
with coecients in Lv.

Cómo citar

APA

Albis, V. & Carvajal, E. (2010). Exponential sums, number of solutions of algebraic equations, and Poincaré series. Boletín de Matemáticas, 17(2), 165–192. https://revistas.unal.edu.co/index.php/bolma/article/view/40803

ACM

[1]
Albis, V. y Carvajal, E. 2010. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Boletín de Matemáticas. 17, 2 (jul. 2010), 165–192.

ACS

(1)
Albis, V.; Carvajal, E. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Bol. Matemáticas 2010, 17, 165-192.

ABNT

ALBIS, V.; CARVAJAL, E. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Boletín de Matemáticas, [S. l.], v. 17, n. 2, p. 165–192, 2010. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/40803. Acesso em: 13 feb. 2026.

Chicago

Albis, Víctor, y Edilmo Carvajal. 2010. «Exponential sums, number of solutions of algebraic equations, and Poincaré series». Boletín De Matemáticas 17 (2):165-92. https://revistas.unal.edu.co/index.php/bolma/article/view/40803.

Harvard

Albis, V. y Carvajal, E. (2010) «Exponential sums, number of solutions of algebraic equations, and Poincaré series», Boletín de Matemáticas, 17(2), pp. 165–192. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40803 (Accedido: 13 febrero 2026).

IEEE

[1]
V. Albis y E. Carvajal, «Exponential sums, number of solutions of algebraic equations, and Poincaré series», Bol. Matemáticas, vol. 17, n.º 2, pp. 165–192, jul. 2010.

MLA

Albis, V., y E. Carvajal. «Exponential sums, number of solutions of algebraic equations, and Poincaré series». Boletín de Matemáticas, vol. 17, n.º 2, julio de 2010, pp. 165-92, https://revistas.unal.edu.co/index.php/bolma/article/view/40803.

Turabian

Albis, Víctor, y Edilmo Carvajal. «Exponential sums, number of solutions of algebraic equations, and Poincaré series». Boletín de Matemáticas 17, no. 2 (julio 1, 2010): 165–192. Accedido febrero 13, 2026. https://revistas.unal.edu.co/index.php/bolma/article/view/40803.

Vancouver

1.
Albis V, Carvajal E. Exponential sums, number of solutions of algebraic equations, and Poincaré series. Bol. Matemáticas [Internet]. 1 de julio de 2010 [citado 13 de febrero de 2026];17(2):165-92. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/40803

Descargar cita

Visitas a la página del resumen del artículo

230

Descargas

Los datos de descargas todavía no están disponibles.