Publicado

2016-07-01

A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values

Palabras clave:

Chebyshev's inequality, Homand-Weiland's inequality, eigenvalues perturbation, singular value perturbation. (en)

Descargas

Autores/as

  • Humberto Sarria Universidad Nacional de Colombia
  • Juan Carlos Martínez Universidad del Rosario

Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),

As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])

where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ1, …, μn) and λ = (λ1, …, λn), respectively.
We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.

Cómo citar

APA

Sarria, H. & Martínez, J. C. (2016). A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values. Boletín de Matemáticas, 23(2), 105–114. https://revistas.unal.edu.co/index.php/bolma/article/view/62218

ACM

[1]
Sarria, H. y Martínez, J.C. 2016. A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values. Boletín de Matemáticas. 23, 2 (jul. 2016), 105–114.

ACS

(1)
Sarria, H.; Martínez, J. C. A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values. Bol. Matemáticas 2016, 23, 105-114.

ABNT

SARRIA, H.; MARTÍNEZ, J. C. A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values. Boletín de Matemáticas, [S. l.], v. 23, n. 2, p. 105–114, 2016. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/62218. Acesso em: 13 feb. 2026.

Chicago

Sarria, Humberto, y Juan Carlos Martínez. 2016. «A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values». Boletín De Matemáticas 23 (2):105-14. https://revistas.unal.edu.co/index.php/bolma/article/view/62218.

Harvard

Sarria, H. y Martínez, J. C. (2016) «A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values», Boletín de Matemáticas, 23(2), pp. 105–114. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/62218 (Accedido: 13 febrero 2026).

IEEE

[1]
H. Sarria y J. C. Martínez, «A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values», Bol. Matemáticas, vol. 23, n.º 2, pp. 105–114, jul. 2016.

MLA

Sarria, H., y J. C. Martínez. «A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values». Boletín de Matemáticas, vol. 23, n.º 2, julio de 2016, pp. 105-14, https://revistas.unal.edu.co/index.php/bolma/article/view/62218.

Turabian

Sarria, Humberto, y Juan Carlos Martínez. «A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values». Boletín de Matemáticas 23, no. 2 (julio 1, 2016): 105–114. Accedido febrero 13, 2026. https://revistas.unal.edu.co/index.php/bolma/article/view/62218.

Vancouver

1.
Sarria H, Martínez JC. A new proof of the Benedetti’s inequality and some applications to perturbation to real eigenvalues and singular values. Bol. Matemáticas [Internet]. 1 de julio de 2016 [citado 13 de febrero de 2026];23(2):105-14. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/62218

Descargar cita

Visitas a la página del resumen del artículo

405

Descargas

Los datos de descargas todavía no están disponibles.