Publicado
A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
Palabras clave:
Chebyshev's inequality, Homand-Weiland's inequality, eigenvalues perturbation, singular value perturbation. (en)Descargas
Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),
As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])
where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ1, …, μn) and λ = (λ1, …, λn), respectively.
We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2016 Boletín de Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.


