Publicado

2017-07-01

Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions

Algunas propiedades de anillos de las extensiones PBW torcidas

Palabras clave:

Armendariz, Baer, quasi-Baer, p.p and p.q.-Baer rings, skew Poincaré-Birkhoff-Witt extensions. (en)
Armendariz, anillos de Baer, quasi-Baer, p.p y p.q.-Baer, extensiones torcidas de Poincaré-Birkhoff-Witt (es)

Descargas

Autores/as

  • Arturo Niño Universidad Nacional de Colombia
  • Armando Reyes Universidad Nacional de Colombia
In this paper we investigate a notion of Armendariz ring for skew Poincaré-Birkhoff-Witt extensions. We proceed with the study on the relationship between the ring theoretical properties of being Baer, quasi-Baer, p.p. and p.q.-Baer of a ring R and a skew PBW extension A over R.
En este artículo investigamos una noción de anillo de Armendariz para las extensiones torcidas de Poincaré-Birkhoff-Witt. Procedemos con el estudio de las relaciones entre las propiedades de Baer, quasi-Baer, p.p. y p.q.-Baer de un anillo R y una extensión PBW torcida sobre R.

Referencias

D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2275.

E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Aust. Math. Soc. 18 (1974), 470-473.

G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MDSN, Pacific J. Math. 97 (1981), 283-292.

G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25-42.

G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639-660.

W. Chen and W. Tong, A note on skew Armendariz rings, Comm. Algebra 33 (2005), 1137-1140.

W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.

C. Gallego and O. Lezama, Gröbner bases for ideals of o-PBW extensions, Comm. Algebra 99 (2011), no. 1, 50-75.

J. Han, Y. Hirano, and H. Kim, Some results on skew polynomial rings over a reduced ring, in international symposium on ring theory (kyongju, 1999), Trends Math., Birkhäuser Boston, Boston, MA (2001), 123-129.

Y. Hirano, On the uniqueness of rings of coefficients in skew polynomial rings, Publ. Math. Debrecen 54 (1999), 489-495.

Y. Hirano, On ordered monoid rings over a quasi-Baer rings, Comm. Algebra 29 (2001), 2089-2095.

C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.

C. Y. Hong, N. K. Kim, and T. K. Kwak, On Skew Armendariz Rings, Comm. Algebra 31 (2003), no. 1, 103-122.

I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.

N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.

J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.

T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), 583-593.

O. Lezama, J. P. Acosta, and A. Reyes, Prime ideals of skew PBW extensions, Rev. Un. Mat. Argentina 56 (2015), no. 2, 39-55.

O. Lezama and A. Reyes, Some homological properties of skew PBW extensions, 42 (2014), no. 3, 1200-1230.

J. Matczuk, A characterization of o-rigid rings, Comm. Algebra 32 (2004), no. 11, 4333-4336.

I. Mohamed and B. Y. L'Moufadal, On quasi-Baer rings of Ore extensions, East-West J. Math. 8 (2006), no. 2, 119-127.

A. Moussavi and E Hashemi, On (a, d)-skew Armendariz rings, J. Korean Math. Soc. 42 (2005), 353-363.

M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.

A. Reyes, Ring and Module Theoretical Properties of o-PBW Extensions, Ph.D. thesis, Universidad Nacional de Colombia, 2009.

A. Reyes, Jacobson's conjecture and skew PBW extensions, Rev. Integr. Temas Mat. 32 (2014), no. 2, 139-152.

A. Reyes, Uniform dimension over skew PBW extensions, Rev. Col. Mat. 48 (2014), no. 1, 79-96.

A. Reyes, Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings, Rev. Integr. Temas Mat. 33 (2015), no. 2, 173-189.

A. Reyes and H. Suárez, Armendariz property for skew PBW extensions and their classical ring of quotients, Rev. Integr. Temas Mat. 34 (2016), no. 2, 147-168.

A. Reyes and H. Suárez, A note on zip and reversible skew PBW extensions, Bol. Mat. (N.S.) 23 (2016), no. 1, 71-79.

H. Suárez, O. Lezama, and A. Reyes, Some Relations between N-Koszul, Artin-Schelter Regular and Calabi-Yau algebras with Skew PBW Extensions, Ciencia en Desarrollo 6 (2015), no. 2, 205-213.

H. Suárez and A. Reyes, Koszulity for skew PBW extensions over fields, JP J. Algebra Number Theory Appl. 39 (2017), no. 2, 181-203.

Cómo citar

APA

Niño, A. y Reyes, A. (2017). Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Boletín de Matemáticas, 24(2), 131–148. https://revistas.unal.edu.co/index.php/bolma/article/view/70882

ACM

[1]
Niño, A. y Reyes, A. 2017. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Boletín de Matemáticas. 24, 2 (jul. 2017), 131–148.

ACS

(1)
Niño, A.; Reyes, A. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol. Matemáticas 2017, 24, 131-148.

ABNT

NIÑO, A.; REYES, A. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Boletín de Matemáticas, [S. l.], v. 24, n. 2, p. 131–148, 2017. Disponível em: https://revistas.unal.edu.co/index.php/bolma/article/view/70882. Acesso em: 18 nov. 2024.

Chicago

Niño, Arturo, y Armando Reyes. 2017. «Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions». Boletín De Matemáticas 24 (2):131-48. https://revistas.unal.edu.co/index.php/bolma/article/view/70882.

Harvard

Niño, A. y Reyes, A. (2017) «Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions», Boletín de Matemáticas, 24(2), pp. 131–148. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/70882 (Accedido: 18 noviembre 2024).

IEEE

[1]
A. Niño y A. Reyes, «Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions», Bol. Matemáticas, vol. 24, n.º 2, pp. 131–148, jul. 2017.

MLA

Niño, A., y A. Reyes. «Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions». Boletín de Matemáticas, vol. 24, n.º 2, julio de 2017, pp. 131-48, https://revistas.unal.edu.co/index.php/bolma/article/view/70882.

Turabian

Niño, Arturo, y Armando Reyes. «Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions». Boletín de Matemáticas 24, no. 2 (julio 1, 2017): 131–148. Accedido noviembre 18, 2024. https://revistas.unal.edu.co/index.php/bolma/article/view/70882.

Vancouver

1.
Niño A, Reyes A. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol. Matemáticas [Internet]. 1 de julio de 2017 [citado 18 de noviembre de 2024];24(2):131-48. Disponible en: https://revistas.unal.edu.co/index.php/bolma/article/view/70882

Descargar cita

Visitas a la página del resumen del artículo

344

Descargas

Los datos de descargas todavía no están disponibles.