Publicado
Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions
Algunas propiedades de anillos de las extensiones PBW torcidas
Palabras clave:
Armendariz, Baer, quasi-Baer, p.p and p.q.-Baer rings, skew Poincaré-Birkhoff-Witt extensions. (en)Armendariz, anillos de Baer, quasi-Baer, p.p y p.q.-Baer, extensiones torcidas de Poincaré-Birkhoff-Witt (es)
Descargas
Referencias
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2275.
E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Aust. Math. Soc. 18 (1974), 470-473.
G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MDSN, Pacific J. Math. 97 (1981), 283-292.
G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25-42.
G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), no. 2, 639-660.
W. Chen and W. Tong, A note on skew Armendariz rings, Comm. Algebra 33 (2005), 1137-1140.
W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.
C. Gallego and O. Lezama, Gröbner bases for ideals of o-PBW extensions, Comm. Algebra 99 (2011), no. 1, 50-75.
J. Han, Y. Hirano, and H. Kim, Some results on skew polynomial rings over a reduced ring, in international symposium on ring theory (kyongju, 1999), Trends Math., Birkhäuser Boston, Boston, MA (2001), 123-129.
Y. Hirano, On the uniqueness of rings of coefficients in skew polynomial rings, Publ. Math. Debrecen 54 (1999), 489-495.
Y. Hirano, On ordered monoid rings over a quasi-Baer rings, Comm. Algebra 29 (2001), 2089-2095.
C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.
C. Y. Hong, N. K. Kim, and T. K. Kwak, On Skew Armendariz Rings, Comm. Algebra 31 (2003), no. 1, 103-122.
I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.
J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), 583-593.
O. Lezama, J. P. Acosta, and A. Reyes, Prime ideals of skew PBW extensions, Rev. Un. Mat. Argentina 56 (2015), no. 2, 39-55.
O. Lezama and A. Reyes, Some homological properties of skew PBW extensions, 42 (2014), no. 3, 1200-1230.
J. Matczuk, A characterization of o-rigid rings, Comm. Algebra 32 (2004), no. 11, 4333-4336.
I. Mohamed and B. Y. L'Moufadal, On quasi-Baer rings of Ore extensions, East-West J. Math. 8 (2006), no. 2, 119-127.
A. Moussavi and E Hashemi, On (a, d)-skew Armendariz rings, J. Korean Math. Soc. 42 (2005), 353-363.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.
A. Reyes, Ring and Module Theoretical Properties of o-PBW Extensions, Ph.D. thesis, Universidad Nacional de Colombia, 2009.
A. Reyes, Jacobson's conjecture and skew PBW extensions, Rev. Integr. Temas Mat. 32 (2014), no. 2, 139-152.
A. Reyes, Uniform dimension over skew PBW extensions, Rev. Col. Mat. 48 (2014), no. 1, 79-96.
A. Reyes, Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings, Rev. Integr. Temas Mat. 33 (2015), no. 2, 173-189.
A. Reyes and H. Suárez, Armendariz property for skew PBW extensions and their classical ring of quotients, Rev. Integr. Temas Mat. 34 (2016), no. 2, 147-168.
A. Reyes and H. Suárez, A note on zip and reversible skew PBW extensions, Bol. Mat. (N.S.) 23 (2016), no. 1, 71-79.
H. Suárez, O. Lezama, and A. Reyes, Some Relations between N-Koszul, Artin-Schelter Regular and Calabi-Yau algebras with Skew PBW Extensions, Ciencia en Desarrollo 6 (2015), no. 2, 205-213.
H. Suárez and A. Reyes, Koszulity for skew PBW extensions over fields, JP J. Algebra Number Theory Appl. 39 (2017), no. 2, 181-203.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2017 Boletín de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.