Publicado

2023-11-06

El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión

The origin of Peruvian wetlands and their relationship with the geologicalenvironmental processes of South America: A review

DOI:

https://doi.org/10.15446/caldasia.v46n2.104179

Palabras clave:

Evolución, Historia, Humedales Amazónicos, Humedales Andinos, Humedales Costeros (es)
Amazonian Wetlands, Andean Wetlands, Costal Wetlands, Evolution, History (en)

Descargas

Autores/as

El Perú cuenta con diversos humedales altamente productivos, distribuidos en sus tres regiones geográficas (costa, sierra y selva). Estos ecosistemas han estado sometidos a diversos eventos hidrometereológicos, climáticos y antrópicos. El análisis de su origen puede servir para identificar cambios en el entorno geomórfico e hidrológico, así como procesos evolutivos biológicos. El presente trabajo tuvo como objetivo sintetizar la información existente sobre los procesos geológico-ambientales que definen el origen de los humedales actuales peruanos. Fruto de una compilación sistemática de la literatura (usando las plataformas Science Direct, Scopus y Scielo) se encontraron 144 artículos relacionados a su historia reciente. El origen de los humedales andinos está direccionado por procesos tectónicos (entre los 16 Ma y 4 Ma), desglaciaciones (después del Último Máximo Glacial), calentamientos (durante el Holoceno) y el afloramiento de aguas subterráneas. Los humedales amazónicos tienen su origen hace 24 Ma a partir de un sistema fluvial, pasando por una fase de mega humedal (Pebas) y adquiriendo su configuración actual (sistema de drenaje) hace 2,5 millones de años. La formación de humedales de la costa está ligada a cuatro procesos: incursiones marinas, eventos meteorológicos como el ENSO (El Niño-Southern Oscillation), actividades antrópicas relacionados a escorrentías y por filtración de aguas subterráneas. Se describe el rol de las actividades humanas en la configuración actual de estos humedales, así como los vacíos de información para la historia de los humedales de cada región.

Peru has various highly productive wetlands distributed in three geographical regions. These ecosystems  have been subjected to many hydrometeorological, climatic, and anthropic events. Therefore, the analysis of its origin can identify changes in the geomorphic and hydrological environment and biological evolutionary processes. The objective of this article was to synthesize the existing information about geological-environmental processes that define the origin of current Peruvian wetlands. As a result of a systematic compilation of the literature (using the Science Direct, Scopus, and Scielo platforms), 144 articles related to its recent history were found. The origin of Andean wetlands is directed by tectonic processes (between 16 Ma and 4 Ma), deglaciation (after the Last Glacial Maximum), warming (during the Holocene), and water outcrop. The Amazonian wetlands have their origin in 24 Ma from a fluvial system, passing through a mega-wetland phase (Pebas) and acquiring their current configuration (drainage system) 2.5 million years ago. The formation of coastal wetlands is linked to four processes: marine incursions, meteorological events such as ENSO (El Niño-Southern Oscillation), human activities related to runoff, and groundwater seepage. The role of human activities in the current configuration of these wetlands was described. Also, the information gaps in the history of the wetlands in each region are identified.

Referencias

Antoine PO, Yans J, Castillo AA, Stutz N, Abello MA, Adnet S, Custódio MA, Benites-Palomino A, Billet G, Boivin M, Herrera F, Jaramillo C, Mártinez C, Moreno F, Navarrete RE, Negri FR, Parra F, Pujos F, Rage JC, Ribeiro AM, Robinet C, Roddaz M, Tejada-Lara JV, Varas-Malca R, Ventura-Santos R, Salas-Gismondi R, Marivaux L. 2021. Biotic community and landscape changes around the Eocene–Oligocene transition at Shapaja, Peruvian Amazonia: Regional or global drivers? Glob. Planet. Change. 202:103512. doi: https://doi.org/10.1016/j.gloplacha.2021.103512

Aponte H. 2017. Humedales de la Costa central del Perú: Un diagnóstico de los humedales de Santa Rosa, laguna El Paraíso y Albufera de Medio Mundo. Lima: CooperAcción. Los humedales: ¿Qué son y por qué son importantes?; p. 26.

Aponte H, Cano A 2013. Estudio florístico comparativo de seis humedales de la costa de lima (Perú): Actualización y nuevos retos para su conservación. Rev. Latinoam. Conservacion. 3(2): 15 - 27. doi: https://smia.munlima.gob.pe/uploads/documento/e4c385746680108d.pdf

Aponte H, Gonzales S, Gomez A. 2020. Impulsores de cambio en los humedales de América Latina: El caso de los humedales costeros de Lima. South Sustainability. 1(2):23-24. doi: https://doi.org/10.21142/SS-0102-2020-023

Aponte H, Ramírez W, Lértora G, Vargas R, Fernando G, Carazas N, Liviac R. 2015. Incendios en los Humedales de la Costa Central del Perú: Una amenaza frecuente. Científica. 12(1):8-7. doi: https://revistas.cientifica.edu.pe/index.php/cientifica/article/view/166

Aponte H, Ramírez DW. 2011. Humedales de la costa central del Perú: Estructura y amenazas de sus comunidades vegetales. Ecol. Apl. 10(1-2):31. doi: https://doi.org/10.21704/rea.v10i1-2.411

Archundia D, Duwig C, Spadini L, Uzu G, Guédron S, Morel MC, Cortez R, Ramos O, Chincheros J, Martins J. 2016. How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia). Wat. Air and Soil Poll. 228(1):3-17. doi: https://doi.org/10.1007/s11270-016-3217-0

Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP. 2001. The history of South American tropical precipitation for the past 25,000 years. Science. 291(5504): 640-643. doi: https://doi.org/10.1126/science.291.5504.640

Baraer M, Mark BG, Mckenzie JM, Condom T, Bury J, Huh KI, Portocarrero C, Gómez J, Rathay S. 2012. Glacier recession and water resources in Peru’s Cordillera Blanca. J. Glaciol. 58(207): 134-150. doi: https://doi.org/10.3189/2012JoG11J186

Bernal R, Bacon CD, Balslev H, Hoorn C, Bourlat SJ, Tuomisto H, Salamanca S, van Manen MT, Romero I, Sepulchre P, Antonelli A. 2019. Could coastal plants in western Amazonia be relicts of past marine incursions? J. Biogeogr. 46: 1749-1759. doi: https://doi.org/10.1111/jbi.13560

Bhomia RK, van Lent J, Rios JM, Hergoualc’h K, Coronado EN, Murdiyarso D. 2019. Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitig. Adapt. Strateg. Glob. Change. 24(4):645-668. doi: https://doi.org/10.1007/s11027-018-9809-9

Boonstra M, Ramos MIF, Lammertsma EI, Antoine PO, Hoorn C. 2015. Marine connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Palaeogeogr. Palaeoclimatol. Palaeoecol.(4)17:176-194. doi: https://doi.org/10.1016/j.palaeo.2014.10.032

Bosnian AF, van der Molen PC, Young R, Cleef AM. 1993. Ecology of a paramo cushion mire. J. Veg. Sci. 4(5):633-640. doi: https://doi.org/10.2307/3236128

Bromley GRM, Schaefer JM, Hall BL, Rademaker KM, Putnam AE, Todd CE, Hegland M, Winckler G, Jackson MS, Strand PD. 2016. A cosmogenic Be chronology for the local last glacial maximum and termination in the Cordillera Oriental, southern Peruvian Andes: Implications for the tropical role in global climate. Quat. Sci. Rev. 148(15):54-67. doi: https://doi.org/10.1016/j.quascirev.2016.07.010

Buffen AM, Thompson LG, Mosley-Thompson E, Huh KI. 2009. Recently exposed vegetation reveals Holocene changes in the extent of the Quelccaya Ice Cap, Peru. Quat. Res. 72(2):157-163. doi: https://doi.org/10.1016/j.yqres.2009.02.007

Burns P, Nolin A. 2014. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ. 140:165-178. doi: https://doi.org/10.1016/j.rse.2013.08.026

Bush MB, Silman MR, Urrego DH. 2004. 48,000 Years of Climate and Forest Change in a Biodiversity Hot Spot. Science: 303(5659): 827-829. doi: https://doi.org/10.1126/science.1090795

Caballero J, Messinger M, Román-Dañobeytia F, Ascorra C, Fernandez LE, Silman M. 2018. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 10(12):1-17. doi: https://doi.org/10.3390/rs10121903

Campbell KE, Frailey CD, Romero-Pittman L. 2006. The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239(1-2):166-219. doi: https://doi.org/10.1016/j.palaeo.2006.01.020

Caputo MV, Soares EA. 2016. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system. Brazilian J. Geol. 46(2):301-328. doi: https://doi.org/10.1590/2317-4889201620160066

Codato D, Pappalardo SE, Diantini A, Ferrarese F, Gianoli F, De Marchi M. 2019. Oil production, biodiversity conservation and indigenous territories: Towards geographical criteria for unburnable carbon areas in the Amazon rainforest. Appl. Geogr. 102:28-38. doi: https://doi.org/10.1016/j.apgeog.2018.12.001

Cooper DJ, Wolf EC, Colson C, Vering W, Granda A, Meyer M. 2010. Alpine peatlands of the andes, Cajamarca, Perú. Arct. Antarct. Alp. Res. 42(1):19-33. doi: https://doi.org/10.1657/1938-4246-42.1.19

Díaz A, Séanz-Zuñiga L, Zutta B. 2021. Formación de un humedal en la costa norte del Perú: estabilidad biofísica y diversidad biológica. Rev. Peru. Biol. 28(3):62-70. doi: https://dx.doi/10.15381/rpb.v.28i3.21132

dos Reis M, Graça PM, Yanai AM, Ramos CJ, Fearnside PM. 2021. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. J. Enviro. Manage. 28(288). doi: https://doi.org/10.1016/j.jenvman.2021.112310

Drenkhan F, Guardamino L, Huggel C, Frey H. 2018. Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin, Peruvian Andes. Glob. and Planet. Change. 169:105-118. doi: https://doi.org/10.1016/j.gloplacha.2018.07.005

Emmer A, Klimeš J, Mergili M, Vilímek V, Cochachin A. 2016. 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods. Catena. 147:269-279. doi: https://doi.org/10.1016/j.catena.2016.07.032

Emmer A, Le Roy M, Sattar A, Veettil BK, Alcalá-Reygosa J, Campos N, Malecki J, Cochachin A. 2021. Glacier retreat and associated processes since the Last Glacial Maximum in the Lejiamayu valley, Peruvian Andes. J. S. Am. Earth Sci. 109. doi: https://doi.org/10.1016/j.jsames.2021.103254

Emmer A, Loarte EC, Klimeš J, Vilímek V. 2015. Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru). Geomorphology. 228:345-355. doi: https://doi.org/10.1016/j.geomorph.2014.09.018

Fabiano E, Schulz C, Martín M. 2021. Wetland spirits and indigenous knowledge: Implications for the conservation of wetlands in the Peruvian Amazon. Curr. Opin. Environ. Sustain. 3. doi: https://doi.org/10.1016/j.crsust.2021.100107

Farah-Pérez A, Umaña-Villalobos G, Picado-Barboza J, Anderson EP. 2020. An analysis of river fragmentation by dams and river dewatering in Costa Rica. River. Res. Appl. 36(8):1442-1448. doi: https://doi.org/10.1002/rra.3678

Figueiredo J, Hoorn C, van der Ven P, Soares E. 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology. 37(7):619-622. doi: https://doi.org/10.1130/G25567A.1

Figueiredo J, Hoorn C, van der Ven P, Soares E. 2010. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin: Reply. Geology. 38(7):e213. doi: https://doi.org/10.1130/G31057Y.1

Finer M, Jenkins CN. 2012. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity. PLoS ONE. 7(4):e35126. doi: https://doi.org/10.1371/journal.pone.0035126

Fortner SK, Mark BG, McKenzie JM, Bury J, Trierweiler A, Baraer M, Burns PJ, Munk L. 2011. Elevated stream trace and minor element concentrations in the foreland of receding tropical glaciers. J. Appl. Geochem. 26(11):1792-1801. doi: https://doi.org/10.1016/j.apgeochem.2011.06.003

Fritz SC, Baker PA, Tapia P, Spanbauer T, Westover K. 2012. Evolution of the Lake Titicaca basin and its diatom flora over the last ~370,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 317-318:93-103. doi: https://doi.org/10.1016/j.palaeo.2011.12.013

Goodbred SL, Dillehay TD, Galvéz C, Sawakuchi AO. 2020. Transformation of maritime desert to an agricultural center: Holocene environmental change and landscape engineering in Chicama River valley, northern Peru coast. Quat. Sci. Rev. 2(27):106-146. doi: https://doi.org/10.1016/j.quascirev.2019.106046

Goodman AY, Rodbell DT, Seltzer GO, Mark BG. 2001. Subdivision of glacial deposits in southeastern Peru based on pedogenic development and radiometric ages. Quat. Rest. 56(1): 31-50. doi: https://doi.org/10.1006/qres.2001.2221

Gordon RP, Lautz LK, McKenzie JM, Mark BG, Chavez D, Baraer M. 2015. Sources and pathways of stream generation in tropical proglacial valleys of the Cordillera Blanca, Peru. J. Hydrol. 522: 628-644. doi: https://doi.org/10.1016/j.jhydrol.2015.01.013

Grabowski RC, Surian N, Gurnell AM. 2014. Characterizing geomorphological change to support sustainable river restoration and management. WIREs Water. 1(5):483-512. doi: https://doi.org/10.1002/wat2.1037

Grande JA, Loayza-Muro R, Alonso-Chaves FM, Fortes JC, Willems B, Sarmiento AM, Santisteban M, Dávila JM, de la Torre ML, Durães N, Diaz-Curiel J, Luís AT. 2019. The Negro River (Ancash-Peru): A unique case of water pollution, three environmental scenarios and an unresolved issue. Sci. Total Environ. 648:398-407. doi: https://doi.org/10.1016/j.scitotenv.2018.08.068

Gross M, Piller WE, Ramos MI, Douglas J. 2011. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil). J. S. Am. Earth Sci. 32(2):169-181. doi: https://doi.org/10.1016/j.jsames.2011.05.004

Harden CP. 2006. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology. 79(3-4):249-263. doi: https://doi.org/10.1016/j.geomorph.2006.06.021

Hergoualc’h K, Gutiérrez-Vélez VH, Menton M, Verchot LV. 2017. Characterizing degradation of palm swamp peatlands from space and on the ground: An exploratory study in the Peruvian Amazon. For. Ecol. Manag. 393:63-73. doi: https://doi.org/10.1016/j.foreco.2017.03.016

Hill AF, Stallard RF, Rittger K. 2018. Clarifying regional hydrologic controls of the Marañón River, Peru through rapid assessment to inform system-wide basin planning approaches. Elementa. 6:37. doi: https://doi.org/10.1525/elementa.290

Hillyer R, Valencia BG, Bush MB, Silman MR, Steinitz-Kannan M. 2009. A 24,700-yr paleolimnological history from the Peruvian Andes. Quat. Res. 71(1):71-82. doi: https://doi.org/10.1016/j.yqres.2008.06.006

Hoorn C, Wesselingh FP, Hovikoski J, Guerrero J. 2009. The Development of the Amazonian Mega-Wetland (Miocene; Brazil, Colombia, Peru, Bolivia). En Hoorn C, Wesselingh FP, editores. Amazonia: Landscape and Species Evolution. Chichester, UK: Blackwell Publishing Ltd. p. 123-142. doi: https://doi.org/10.1002/9781444306408.ch8

Hoorn C, Wesselingh FP, Ter-Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A. 2010. Amazonia through time: Andean uplift, climate change landscape evolution, and biodiversity. Science. 330(6006):927-931. doi: https://doi.org/10.1126/science.1194585

Hovikoski J, Gingras M, Räsänen M, Rebata LA, Guerrero J, Ranzi A, Melo J, Romero L, del Prado HN, Jaimes F, Lopez S. 2007. The nature of Miocene Amazonian epicontinental embayment: High-frequency shifts of the low-gradient coastline. Geol. Soc. Am. Bull. 119 (11-12):1506-1520. doi: https://doi.org/10.1130/0016-7606(2007)119[1506:TNOMAE]2.0.CO;2

Huaman Y, Moreira-Turcq P, Espinoza R, Llanos R, Apaéstegui J, Turcq B, Willems B, Willems B. 2020. Influencia de los cambios climáticos en la acumulación de carbono en bofedales altoandinos durante los últimos 2500 años. Ecología Aplicada. 19(1):35- 41. doi: https://doi.org/10.21704/rea.v19i1.1444

Imfeld N, Sedlmeier K, Gubler S, Correa K, Davila CP, Huerta A, Lavado-Casimiro W, Rohrer M, Scherrer SC, Schwierz C. 2021. A combined view on precipitation and temperature climatology and trends in the southern Andes of Peru. Int. J. Climatol. 41(1):679-698. doi: https://doi.org/10.1002/joc.6645

Jaramillo C, Romero I D, Apolito C, Bayona G, Duarte E, Louwye S, Escobar J, Luque J, Carrillo-Briceño JD, Zapata V, Mora A, Schouten S, Zavada M, Harrington G, Ortiz J, Wesselingh FP. 2017. Miocene flooding events of western Amazonia. Sci. Adv. 3(5): e1601693. doi: https://doi.org/10.1126/sciadv.1601693

Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes C, Maltchik J, Schöngart J, Schaeffer-Novelli Y, Agostinho AA. 2013. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic. Conserv.: Mar. Freshw. Ecosyst. 24(1):5–22. doi:https://doi.org/10.1002/aqc.2386

Kelly TJ, Lawson IT, Roucoux KH, Baker TR, Honorio EN. 2020. Patterns and drivers of development in a west Amazonian peatland during the late Holocene. Quat. Sci. Rev. 230: 106168.doi: https://doi.org/10.1016/j.quascirev.2020.106168

Klimeš J, Novotný J, Rapre AC, Balek J, Zahradníček P, Strozzi T, Sana H, Frey H, René M, Štěpánek P, Meitner J, Junghardt J. 2021. Paraglacial Rock Slope Stability Under Changing Environmental Conditions, Safuna Lakes, Cordillera Blanca Peru. Front. Earth Sci. 9:2296-6463 doi: https://doi.org/10.3389/feart.2021.607277

Lähteenoja O., Ruokolainen K., Schulman L, Alvarez J. 2009. Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena. 79(2):140-145. doi: https://doi.org/10.1016/j.catena.2009.06.006

Latrubesse EM, Cozzuol M., da Silva-Caminha SAF, Rigsby CA, Absy ML, Jaramillo C. 2010. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Sci. Rev. 99(3-4):99-124. doi: https://doi.org/10.1016/j.earscirev.2010.02.005

Lizaga I, Gaspar L, Quijano L, Dercon G, Navas A. 2019. NDVI, 137Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Parón Catchment (Cordillera Blanca, Perú). Sci. Total Environ. 651:250-260. doi: https://doi.org/10.1016/j.scitotenv.2018.09.075

Llauca H, Lavado-Casimiro W, León K, Jimenez J, Traverso K, Rau P. 2021. Assessing Near Real-Time Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Peruvian Andes. Remote Sens. 13(4):826. doi: https://doi.org/10.3390/rs13040826

Loza-Del-Carpio A, Taype-Huamán I. 2021. Análisis multitemporal de asociaciones vegetales y cambios de uso del suelo en una localidad altoandina, Puno-Perú. Uniciencia. 35(2):1-19. doi: https://doi.org/10.15359/ru.35-2.3

Marivaux L, Aguirre-Diaz W, Benites-Palomino A, Billet G, Boivin M, Pujos F, Salas-Gismondi R, Tejada-Lara JV, Varas-Malca RM, Antoine PO. 2020. New record of Neosaimiri (Cebidae, Platyrrhini) from the late Middle Miocene of Peruvian Amazonia. J. Hum. Evol. 146: 102835. doi: https://doi.org/10.1016/j.jhevol.2020.102835

MINAM. 2010. Mapa de humedales del Perú. Sistema Nacional de Información Ambiental.

Mora A, Baby P, Roddaz M, Parra M, Brusset S, Hermoza W, Espurt N. 2010. Tectonic History of the Andes and Sub-Andean Zones: Implications for the Development of the Amazon Drainage Basin. In Hoorn C, Wesselingh FP, editores. Amazonia, Landscape and Species Evolution: A Look into the Past. Chichester, UK: Blackwell Publishing Ltd. p. 123-142. doi: https://doi.org/10.1002/9781444306408.ch4

Muñoz R, Huggel C, Drenkhan F, Vis M, Viviroli D. 2021. Comparing model complexity for glacio-hydrological simulation in the data-scarce Peruvian Andes. J. Hydrol. Reg. Stud. 37.. doi: https://doi.org/10.1016/j.ejrh.2021.100932

Ochoa-Tocachi BF, Buytaert W, De Bièvre B, Célleri R, Crespo P, Villacís M, Llerena CA, Acosta L, Villazón M, Guallpa M, Gil-Ríos J, Fuentes P, Olaya D, Viñas P, Rojas G, Arias S. 2016. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol. Process. 30(22):4074-4089. doi: https://doi.org/10.1002/hyp.10980

Paduano GM, Bush MB, Baker PA, Fritz SC, Seltzer GO 2003. A vegetation and fire history of Lake Titicaca since the last glacial maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194(1-3): 259-279. doi: https://doi.org/10.1016/S0031-0182(03)00281-5

Perez ND, Levine KG. 2020. Diagnosing an ancient shallow-angle subduction event from Cenozoic depositional and deformational records in the central Andes of southern Peru. Earth Planet. Sci. Lett. 541. doi: https://doi.org/10.1016/j.epsl.2020.116263

Pérez A, Escobedo R, Castro R, Jesus R, Cardich J, Romero PE, Salas-Gismondi R, Ochoa D, Aponte H, Sanders CJ, Carré M. 2022. Carbon and nutrient burial within Peruvian coastal marsh driven by anthropogenic activities. Mar. Pollut. Bull. 181:113948. doi: https://doi.org/10.1016/j.marpolbul.2022.113948

Polk MH, Young KR, Baraer M, Mark BG, McKenzie JM, Bury J, Carey M. 2017. Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Appl. Geogr. 78:94-103. doi: https://doi.org/10.1016/j.apgeog.2016.11.004

Pulido VM, Bermúdez L. 2018. Estado actual de la conservación de los hábitats de los Pantanos de Villa, Lima, Perú. Arnaldoa. 25(2):679-702. doi: https://doi.org/10.22497/arnaldoa.252.25219

Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein E, Suarez W, Villacis M, Wagnon P. 2013. Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. The Cryosphere. 7(1):81-102. doi: https://doi.org/10.5194/tc-7-81-2013

Ramirez DW, Aponte H, Cano A. 2010. Flora vascular y vegetación del humedal de Santa Rosa (Chancay, Lima). Rev. Peru. Biol. 17(1):105-110. doi: https://doi.org/10.15381/rpb.v17i1.57

RAMSAR 2016. Manual de la Convención de RAMSAR quinta edición, 2016. Introducción a la Convención sobre Humedales. [Último acceso: 06 de noviembre de 2023].

Reátegui-Zirena EG, Stewart PM, Whatley A, Chu-Koo F, Sotero-Solis VE, Merino-Zegarra C, Vela-Paima E. 2014. Polycyclic aromatic hydrocarbon concentrations, mutagenicity, and Microtox® acute toxicity testing of Peruvian crude oil and oil-contaminated water and sediment. Environ. Monit. Assess. 186(4):2171-2184. doi: https://doi.org/10.1007/s10661-013-3527-2

Rivera G, Gonzales S, Aponte H. 2021. Wetlands of the South American Pacific Coast: A Bibliometric Analysis. Wetl. Ecol. Manag. 30(4):869-877. Doi: https://doi.org/10.1007/s11273-021-09830-8

Rodbell DT, Seltzer GO, Mark BG, Smith JA, Abbott MB. 2008. Clastic sediment flux to tropical Andean lakes: Records of glaciation and soil erosion. Quat. Sci. Rev. 27(15-16):1612-1626. doi: https://doi.org/10.1016/j.quascirev.2008.06.004

Roddaz M, Hermoza W, Mora A, Baby P, Parra M, Christophoul F, Brusset S, Espurt N. 2010. Cenozoic Sedimentary Evolution of the Amazonian Foreland Basin System. En Hoorn, Wesselingh FP, editores. Amazonia, Landscape and Species Evolution: A Look into the Past. Chichester, UK: Blackwell Publishing Ltd. p. 61-88. doi: https://doi.org/10.1002/9781444306408.ch5

Rojas C, Munizaga J, Rojas O, Martínez C, Pino J. 2019. Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning. Land Use Policy. 80:47-56. doi: https://doi.org/10.1016/j.landusepol.2018.09.036

Rojas TV, Bartl K, Abad JD. 2021. Assessment of the potential responses of ecosystem services to anthropogenic threats in the Eten wetland, Peru. Ecosyst. Health Sustain. 7(1). doi: https://doi.org/10.1080/20964129.2021.1942224

Rosell-Melé A, Moraleda-Cibrián N, Cartró-Sabaté M, Colomer-Ventura F, Mayor P, Orta-Martínez MO. 2018. Oil pollution in soils and sediments from the Northern Peruvian Amazon. Sci. Total Environ. 610-611:1010-1019. doi: https://doi.org/10.1016/j.scitotenv.2017.07.208

Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EN, Gosling WD, Lähteenoja O. 2013. Vegetation development in an Amazonian peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374: 242-255. doi: https://doi.org/10.1016/j.palaeo.2013.01.023

Salas-Gismondi R, Flynn JJ, Baby P, Tejada-Lara JV, Wesselingh FP, Antoine PO. 2015. A miocene hyperdiverse crocodilian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proc. Biol. Sci. 282(1804): 20142490. doi: https://doi.org/10.1098/rspb.2014.2490

Sánchez-Cuervo AM, de Lima L, Dallmeier F, Garate P, Bravo A, Vanthomme H. 2020. Twenty years of land cover change in the southeastern Peruvian Amazon: Implications for biodiversity conservation. Reg. Environ. Change. 20(1):8. doi: https://doi.org/10.1007/s10113-020-01603-y

Sax S. 2020. Invisible territory: Mapping land-use change and power in the Peruvian Amazon. J. Land Use Sci. 15(2-3):290-305. Scopus. doi: https://doi.org/10.1080/1747423X.2019.1682697

Sciumbata M, Weedon JT, Bogota-Angel G, Hoorn C. 2021. Linking modern-day relicts to a Miocene mangrove community of western Amazonia. Paleobiodivers. Paleoenviron. 101(1):123-140. doi: https://doi.org/10.1007/s12549-020-00470-z

Seltzer GO, Rodbell DT, Baker PA, Fritz SC, Tapia PM, Rowe HD, Dunbar RB. 2002. Early warming of tropical South America at the last glacial-interglacial transition. Science. 296(5573):1685-1686. doi: https://doi.org/10.1126/science.1070136

Servat GP, Alcocer R, Larico MV, Olarte ME, Linares-Palomino R, Alonso A, Ledesma K. 2018. The Effects of Area and Habitat Heterogeneity on Bird Richness and Composition in High Elevation Wetlands (“Bofedales”) of the Central Andes of Peru. Wetlands. 38(6):1133-1145. doi: https://doi.org/10.1007/s13157-017-0919-z

Silva AMM, Asp NE, Gomes VJC, Braga AA, Gomes JD, Fricke AT, Souza-Filho PWM, Souza TP, Almeida PD, Ogston AS, Nittrouer CA. 2021. Recent sedimentation in an Amazon tidal tributary: Integrated analysis of morphology and sedimentology. J South Am Earth Sci. 107.. doi: https://doi.org/10.1016/j.jsames.2020.103134

Swenson JJ, Carter CE, Domec JC, Delgado CI. 2011. Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports. PLoS ONE. 6(4):88-75. doi: https://doi.org/10.1371/journal.pone.0018875

Tapia PM, Fritz SC, Baker PA, Seltzer GO, Dunbar RB. 2003. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 194(1-3):139-164. doi: https://doi.org/10.1016/S0031-0182(03)00275-X

Urrego DH, Bush MB, Silman MR. 2010. A long history of cloud and forest migration from Lake Consuelo, Peru. Quat. Res.73(2):364-373. doi: https://doi.org/10.1016/j.yqres.2009.10.005

van Soelen EE, Kim JH, Santos RV, Dantas EL, Vasconcelos de Almeida F, Pires JP, Roddaz M., Sinninghe JS. 2017. A 30 Ma history of the Amazon River inferred from terrigenous sediments and organic matter on the Ceará Rise. Earth Planet. Sci. Lett. 474:40-48. doi: https://doi.org/10.1016/j.epsl.2017.06.025

Viveen W, Baby P, Sanjurjo-Sanchez J, Hurtado-Enríquez C. 2020. Fluvial terraces as quantitative markers of late Quaternary detachment folding and creeping thrust faulting in the Peruvian Huallaga basin. Geomorphology. 367: 107315. doi: https://doi.org/10.1016/j.geomorph.2020.107315

Viveen W, Zevallos-Valdivia L, Sanjurjo-Sanchez J. 2019. The influence of centennial-scale variations in the South American summer monsoon and base-level fall on Holocene fluvial systems in the Peruvian Andes. Glob. Planet. Change. 17(6):1-22. doi: https://doi.org/10.1016/j.gloplacha.2019.03.001

Wells LE. 1990. Holocene history of the El Nino phenomenon as recorded in flood sediments of northern coastal Peru. Geology. 18(11):1134-1137. doi: https://doi.org/10.1130/0091-7613(1990)018<1134:HHOTEN>2.3.CO;2

Wells LE, Noller JS. 1999. Holocene Coevolution of the Physical Landscape and Human Settlement in Northern Coastal Peru. Geoarchaeology. Int. J. 14(8):755-789. doi: https://doi.org/10.1002/(SICI)1520-6548(199912)14:8<755::AID-GEA5>3.0.CO;2-7

Wesselingh FP, Guerrero J, Räsänen M, Romero L, Vonhof H. 2006. Landscape evolution and depositional processes in the Miocene Amazonian Pebas lake/wetland system: Evidence from exploratory boreholes in northeastern Peru. Scr. Geol. 13(3): 323-361.

Williams DF, Kuzmin M I, Prokopenko AA, Karabanov EB, Khursevich GK, Bezrukova EV. 2001. The Lake Baikal drilling project in the context of a global lake drilling initiative. Quat. Int. 80-81:3-18. doi: https://doi.org/10.1016/S1040-6182(01)00015-5

Winsborough BM, Shimada I, Newsom LA, Jones JG, Segura RA. 2012. Paleoenvironmental catastrophies on the Peruvian coast revealed in lagoon sediment cores from Pachacamac. J. Archaeol. Sci. 39(3):602-614. doi: https://doi.org/10.1016/j.jas.2011.10.018

Wirrmann D, Mourguiart P. 1995. Late Quaternary Spatio-temporal Limnological Variations in the Altiplano of Bolivia and Peru. Quat. Res. 43(3):344-354. doi: https://doi.org/10.1006/qres.1995.1040

Wood JL, Harrison S, Wilson R, Emmer A, Yarleque C, Glasser NF, Torres JC, Caballero A, Araujo J, Bennett GL, Diaz-Moreno A, Garay D, Jara H, Poma C, Reynolds JM, Riveros CA, Romero E, Shannon S, Tinoco T, Turpo E, Villafane H. 2021. Contemporary glacial lakes in the Peruvian Andes. Glob. and Planetary Change. 20(4):103-574.doi: https://doi.org/10.1016/j.gloplacha.2021.103574

Yusta-García R, Orta-Martínez M, Mayor P, González-Crespo C, Rosell-Melé A. 2017. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers. Environ. Pollut. 22(5):370-380. doi: https://doi.org/10.1016/j.envpol.2017.02.063

Cómo citar

APA

Cerna-Arrue, A. y Aponte, H. (2024). El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión. Caldasia, 46(2), 314–325. https://doi.org/10.15446/caldasia.v46n2.104179

ACM

[1]
Cerna-Arrue, A. y Aponte, H. 2024. El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión. Caldasia. 46, 2 (may 2024), 314–325. DOI:https://doi.org/10.15446/caldasia.v46n2.104179.

ACS

(1)
Cerna-Arrue, A.; Aponte, H. El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión. Caldasia 2024, 46, 314-325.

ABNT

CERNA-ARRUE, A.; APONTE, H. El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión. Caldasia, [S. l.], v. 46, n. 2, p. 314–325, 2024. DOI: 10.15446/caldasia.v46n2.104179. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/104179. Acesso em: 22 ene. 2025.

Chicago

Cerna-Arrue, Ariana, y Héctor Aponte. 2024. «El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión». Caldasia 46 (2):314-25. https://doi.org/10.15446/caldasia.v46n2.104179.

Harvard

Cerna-Arrue, A. y Aponte, H. (2024) «El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión», Caldasia, 46(2), pp. 314–325. doi: 10.15446/caldasia.v46n2.104179.

IEEE

[1]
A. Cerna-Arrue y H. Aponte, «El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión», Caldasia, vol. 46, n.º 2, pp. 314–325, may 2024.

MLA

Cerna-Arrue, A., y H. Aponte. «El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión». Caldasia, vol. 46, n.º 2, mayo de 2024, pp. 314-25, doi:10.15446/caldasia.v46n2.104179.

Turabian

Cerna-Arrue, Ariana, y Héctor Aponte. «El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión». Caldasia 46, no. 2 (mayo 2, 2024): 314–325. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/cal/article/view/104179.

Vancouver

1.
Cerna-Arrue A, Aponte H. El origen de los humedales peruanos y su relación con los procesos geológico-ambientales de Sudamérica: Una revisión. Caldasia [Internet]. 2 de mayo de 2024 [citado 22 de enero de 2025];46(2):314-25. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/104179

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

879

Descargas

Los datos de descargas todavía no están disponibles.