Publicado
Life history traits and rearing protocol of Microvelia pulchella (Hemiptera: Veliidae): a potential biological control agent and model for behavioral and ecological studies
Rasgos de historia de vida y protocolo de cría de Microvelia pulchella (Hemiptera:Veliidae): un potencial agente de control biológico y modelo para estudios conductuales y ecológicos
DOI:
https://doi.org/10.15446/caldasia.v46n1.105928Palabras clave:
broad-shouldered water strider, semiaquatic bug, predatory insect, model organism, bioassay, life cycle (en)insecto semiacuático, insecto depredador, organismo modelo, bioensayo, ciclo de vida, chinche semiacuático (es)
Descargas
Microvelia pulchella, a semiaquatic predatory bug widely distributed in the Neotropics, holds great potential as a biocontrol agent against disease-vector mosquitoes and pests in paddy rice fields. Moreover, insects belonging to the genus Microvelia have served as valuable model organisms for ecological and behavioural research. Considering this, our study aimed to establish an enhanced laboratory rearing protocol for M. pulchella based on existing methodologies. The protocol encompasses a decision-making flowchart to optimize the rearing process, a standardized method for accurately determining egg and nymph ages, and photographs illustrating all life stages and sexes of the insect. Additionally, we sought to characterize key life history traits of this species. Our detailed rearing procedure involves utilizing different containers tailored to each insect stage and specific requirements. We observed an average development time of 20.6 days from egg to adult at a temperature of 25°C (room temperature). Interestingly, male adults reared in the laboratory exhibited smaller sizes compared to their field-collected counterparts, while females displayed similar sizes across conditions. Female M. pulchella demonstrated an average egg production of 211.77 eggs, with the highest fecundity occurring within the first five weeks. Fertility followed a similar pattern, peaking during this period. In terms of longevity, females exhibited an average survival time of 74 days, whereas males lived for approximately 91 days. M. pulchella proves to be a convenient model organism for conducting non-invasive experiments, given the multitude of informative traits that can be measured. Additionally, the rearing procedure is cost-effective, straightforward, and requires minimal space.
Microvelia pulchella, un chinche semiacuático depredador presente en el Neotrópico, es prometedor como control biológico de mosquitos vectores y plagas en campos de arroz. Los insectos del género Microvelia son importantes organismos modelo para la investigación en ecología y comportamiento. Considerando esto, nuestro estudio tuvo como objetivo establecer un protocolo mejorado de cría en laboratorio para M. pulchella basado en metodologías existentes. El protocolo contiene un diagrama de decisiones para mejorar la cría, un método estándar para precisar edades de huevos y ninfas, y fotografías ilustrativas de todas las etapas de vida y sexos del insecto. Nuestro procedimiento de cría detallado emplea recipientes adaptados a cada etapa del insecto y sus requisitos específicos. Observamos un tiempo promedio de desarrollo de 20.6 días desde el huevo hasta el adulto a una temperatura de 25°C (temperatura ambiente). Curiosamente, los machos criados en laboratorio fueron más pequeños que los del campo, mientras que las hembras mantuvieron tamaños constantes en todas las condiciones. Las hembras de M. pulchella mostraron una producción promedio de huevos de 211.77, la fecundidad máxima se evidenció durante las primeras cinco semanas. La fertilidad siguió un patrón similar, alcanzando su punto máximo durante este período. En cuanto a la longevidad, las hembras tuvieron un tiempo promedio de supervivencia de 74 días, mientras que los machos vivieron aproximadamente 91 días. Considerando estos resultados, M. pulchella es un organismo modelo adecuado para experimentos no invasivos con rasgos informativos medibles. Además, el procedimiento de cría es eficiente, sencillo y requiere poco espacio.
Referencias
Andersen NM. 1982. The Semiaquatic Bugs (Hemiptera, Gerromorpha). Phylogeny, adaptations, biogeography, and classification. Entomonograph 3 :1–455. DOI: https://doi.org/10.1163/9789004631267
Andersen NM, Weir TA. 2003. The genus Microvelia Westwood in Australia (Hemiptera: Heteroptera: Veliidae). Invertebr Syst. 17(2):261–348. doi: https://doi.org/10.1071/IS02001 DOI: https://doi.org/10.1071/IS02001
Ankeny RA, Leonelli S. 2011. What’s so special about model organisms? Stud Hist Philos Sci Part A. 42(2):313–323. doi: https://doi.org/10.1016/j.shpsa.2010.11.039 DOI: https://doi.org/10.1016/j.shpsa.2010.11.039
Aristizábal-García H. 2017. Hemípteros Acuáticos y Semiacuáticos del Neotrópico. Colección Jorge Álvarez Lleras No. 31. Bogotá: Editorial Gente Nueva.
Bates D, Maechler M, Bolker B, Walker S. 2015. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. 2014.
Chen PP, Nieser N, Zettel H. 2005. The aquatic and semi-aquatic bugs (Heteroptera: Nepomorpha & Gerromorpha) of Malesia. Fauna Malesiana Handbooks. Leiden : Brill. DOI: https://doi.org/10.1163/9789047416807
Delignette-Muller ML, Dutang C, Pouillot R, Denis J-B, Siberchicot A. 2019. Package ‘fitdistrplus.’
Ditrich T, Boukal DS. 2016. Relative male and female contributions to the supercooling point of their offspring in Microvelia reticulata (Heteroptera: Veliidae). Entomol Sci. 19(3):222–227. doi: https://doi.org/10.1111/ens.12196 DOI: https://doi.org/10.1111/ens.12196
Ditrich T, Papáček M. 2010. Effect of population density on the development of Mesovelia furcata (Mesoveliidae), Microvelia reticulata and Velia caprai (Veliidae) (Heteroptera: Gerromorpha). Eur J Entomol. 107(4):579–587. doi: https://doi.org/10.14411/eje.2010.067 DOI: https://doi.org/10.14411/eje.2010.067
Epler JH. 2006. Identification Manual for the Aquatic and Semi-Aquatic Heteroptera of Florida. Tallahassee, United States: Florida Department of Environmental Protection.
Fox J, Weisberg S. 2018. An R Companion to Applied Regression. Thousand Oaks, CA: Sage Publications.
Frick KE. 1949. The Biology of Microvelia Capitata Guerin, 1857, in the Panama Canal Zone and Its Role as a Predator on Anopheline Larvae1 (Veliidae: Hemiptera). Ann Entomol Soc Am. 42(1):77–100. doi: https://doi.org/10.1093/aesa/42.1.77 DOI: https://doi.org/10.1093/aesa/42.1.77
Gutiérrez Y. 2020. Multiple mechanisms in which agricultural insects respond to environmental stressors: canalization, plasticity and evolution. Rev Ciencias Agrícolas. 37(1):90–99. doi: https://doi.org/10.22267/rcia.203701.129 DOI: https://doi.org/10.22267/rcia.203701.129
Gutiérrez Y, Fresch M, Ott D, Brockmeyer J, Scherber C. 2020. Diet composition and social environment determine food consumption, phenotype and fecundity in an omnivorous insect. R Soc Open Sci. 7(4). doi: https://doi.org/10.1098/rsos.200100 DOI: https://doi.org/10.1098/rsos.200100
Harrison RG. 1980. Dispersal Polymorphisms in Insects. Annu Rev Ecol Syst. 11(1):95–118. doi: https://doi.org/10.1146/annurev.es.11.110180.000523 DOI: https://doi.org/10.1146/annurev.es.11.110180.000523
Hayasaka D, Kuwayama N, Takeo A, Ishida T, Mano H, Inoue MN, Nagai T, Sánchez-Bayo F, Goka K, Sawahata T. 2015. Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods. Ecotoxicology. 24(6):1221–1228. doi: https://doi.org/10.1007/s10646-015-1483-z DOI: https://doi.org/10.1007/s10646-015-1483-z
Heong KL, Aquino GB, Barrion AT. 1992. Population dynamics of plant- and leafhoppers and their natural enemies in rice ecosystems in the Philippines. Crop Prot. 11(4):371–379. doi: https://doi.org/10.1016/0261-2194(92)90066-E DOI: https://doi.org/10.1016/0261-2194(92)90066-E
Hope RM. 2013. Rmisc: Ryan miscellaneous. R Packag version. 1(5).
Jackson RR, Walls EI. 1998. Predatory and scavenging behaviour of Microvelia macgregori (Hemiptera: Veliidae), a water‐surface bug from New Zealand. New Zeal J Zool. 25(1):23–28. doi: https://doi.org/10.1080/03014223.1998.9518133 DOI: https://doi.org/10.1080/03014223.1998.9518133
Jones CG, Coleman JS 1991. Plant stress and insect herbivory: toward an integrated perspective. In: Mooney HA, Winner WE, Pell E., editors. Response of plants to multiple stresses. San Diego, CA.: Academic Press, Inc. p. 391. doi: https://doi.org/10.1016/B978-0-08-092483-0.50017-7 DOI: https://doi.org/10.1016/B978-0-08-092483-0.50017-7
Kageyama D, Hoshizaki S, Ishikawa Y. 1998. Female-biased sex ratio in the Asian corn borer , Ostrinia furnacalis : evidence for the occurrence of feminizing bacteria in an insect. Heredity. 81: 311–316. doi: https://doi.org/10.1038/sj.hdy.6883910 DOI: https://doi.org/10.1038/sj.hdy.6883910
Liu Y, Li X, Zhou C, Liu F, Mu W. 2016. Toxicity of nine insecticides on four natural enemies of Spodoptera exigua. Sci Rep. 6:1–9. https://doi.org/10.1038/srep39060 DOI: https://doi.org/10.1038/srep39060
Lüdecke D. c2016. sjPlot: data visualization for statistics in social science. R Packag version. 2(1).
Lüdecke D, Makowski D, Waggoner P. 2019. Performance: assessment of regression models performance. R Packag version 04. 2.
Margalef R. 1983. Limnología. Omega S.A. Barcelona.
Matsushima R, Ohba Shin-ya, Yokoi T. 2021. Oviposition and refractory periods of the small water strider Microvelia horvathi (Heteroptera: Veliidae) after a single mating event. Entomol Sci. 24(1):27–31. doi: https://doi.org/10.1111/ens.12447 DOI: https://doi.org/10.1111/ens.12447
Matsushima R, Yokoi T. 2022. Behavioral patterns that determine the mating rates in a wing dimorphic riffle bug, Microvelia horvathi Lundblad, 1933 (Hemiptera: Heteroptera: Veliidae). J Ethol. 40(2):153–158. doi: https://doi.org/10.1007/s10164-022-00744-3 DOI: https://doi.org/10.1007/s10164-022-00744-3
Miura T, Takahashi R. 1988. Predation of Microvelia pulchella (Hemiptera: Veliidae) on mosquito larvae. J Am Mosq Control Assoc. 4(1):91–93.
Morehouse NI, Nakazawa T, Booher CM, Jeyasingh PD, Hall MD. 2010. Sex in a material world: Why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos. 119(5):766–778. doi: https://doi.org/10.1111/j.1600-0706.2009.18569.x DOI: https://doi.org/10.1111/j.1600-0706.2009.18569.x
Moreira FFF. 2015. True bugs (Heteroptera) of the neotropics. In: A. R. Panizzi & J. Grazia, editor. True Bugs (Heteroptera) of the Neotropics. p. 1–44.
Moreira FFF, Nessimian JL, Rúdio JA, Salles FF. 2010. New species and new records of Veliidae from Espírito Santo State and adjacent Minas Gerais State, Brazil, with notes on nomenclature (Insecta: Heteroptera: Gerromorpha). J Nat Hist. 44(45):2761–2801. doi: https://doi.org/10.1080/00222933.2010.512423 DOI: https://doi.org/10.1080/00222933.2010.512423
Muraji M, Miura T, Nakasuji F. 1989. Phenological studies on the wing dimorphism of a semi-aquatic bug, Microvelia douglasi(Heteroptera: Veliidae). Res Popul Ecol. 31(1):129–138. doi: https://doi.org/10.1007/BF02515811 DOI: https://doi.org/10.1007/BF02515811
Muraji M, Nakasuji F. 1988. Comparative Studies on Life History Traits of Three Wing Dimorphic Water Bugs, Microvelia spp. Westwood(Heteroptera: Veliidae). Soc Popul Ecol. 30:315–327.doi: https://doi.org/10.1007/BF02513252 DOI: https://doi.org/10.1007/BF02513252
Nakasuji F, Dyck VA. 1984. Evaluation of the role of Microvelia douglasi Atrolineata (Bergroth) (Heteroptera: Veliidae) as predator of the Brown Planthopper Nilaparvata lugens (ST/ kL) (Homoptera: Delphacidae). Res Popul Ecol. 26(1):134–149. doi: https://doi.org/10.1007/BF02515513 DOI: https://doi.org/10.1007/BF02515513
Ohba Shin-ya, Huynh TTT, Kawada H, Le LL, Ngoc HT, Hoang SL, Higa Y, Takagi M. 2011. Heteropteran insects as mosquito predators in water jars in southern Vietnam. J Vector Ecol. 36(1):170–174. doi: https://doi.org/10.1111/j.1948-7134.2011.00154.x DOI: https://doi.org/10.1111/j.1948-7134.2011.00154.x
Ramírez-Camejo LA, Bayman P, Mejía LC. 2022. Drosophila melanogaster as an emerging model host for entomopathogenic fungi. Fungal Biol Rev. 42:85–97. doi: https://doi.org/10.1016/j.fbr.2022.09.001 DOI: https://doi.org/10.1016/j.fbr.2022.09.001
Rico A, Waichman AV, Geber-Corrêa R, Van Den Brink PJ. 2011. Effects of malathion and carbendazim on Amazonian freshwater organisms: Comparison of tropical and temperate species sensitivity distributions. Ecotoxicology. 20(4):625–634. doi: https://doi.org/10.1007/s10646-011-0601-9 DOI: https://doi.org/10.1007/s10646-011-0601-9
Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A. 2017. Non-model model organisms. BMC Biol. 15(1):1–31. doi: https://doi.org/10.1186/s12915-017-0391-5 DOI: https://doi.org/10.1186/s12915-017-0391-5
Saavedra JLD, Zanuncio JC, Della TMC, Vilela EF. 1992. Dieta artificial para crianza de Podisus connexivus ( Hemiptera: Pentatomidac ). Turrialba. 42 (2):258–261.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9(7):671–675. doi: https://doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089
Sonoda S, Muraji M, Nakasuji F. 1992. The Effects of Diet Combination on the Development and Fecundity of Semi-Aquatic Insect, Microvelia douglasi (Heteroptera:Veliidae). Appl Entomol Zool. 27(1):162–164. doi: https://doi.org/10.1303/aez.27.162 DOI: https://doi.org/10.1303/aez.27.162
Spence JR, Spence DH, Scudder GGE. 1980. Submergence behavior in Gerris : underwater basking. Amer Midl Nat. 103(2):385–391. doi: https://doi.org/10.2307/2424638 DOI: https://doi.org/10.2307/2424638
Stürup M, Baer-Imhoof B, Nash DR, Boomsma JJ, Baer B. 2013. When every sperm counts: factors affecting male fertility in the honeybee Apis mellifera. Behav Ecol. 24(5):1192–1198. doi: https://doi.org/10.1093/beheco/art049 DOI: https://doi.org/10.1093/beheco/art049
Tabadkani SM, Ashouri A, Rahimi-Alangi V, Fathi-Moghaddam M. 2013. When to estimate sex ratio in natural populations of insects? A study on sex ratio variations of gall midges within a generation. Entomol Sci. 16(1):54–59. doi: https://doi.org/10.1111/j.1479-8298.2012.00537.x DOI: https://doi.org/10.1111/j.1479-8298.2012.00537.x
Tasnin MS, Kay BJ, Peek T, Merkel K, Clarke AR. 2021. Age-related changes in the reproductive potential of the Queensland fruit fly. J Insect Physiol. 131:104–245. doi: https://doi.org/10.1016/j.jinsphys.2021.104245 DOI: https://doi.org/10.1016/j.jinsphys.2021.104245
Taylor SJ, McPherson JE. 1999. Morphological variation and polyvoltinism of Microvelia pulchella (Heteroptera: Veliidae) in southern Illinois, USA. Acta Soc Zool Bohem. 63:237–249.
Taylor SJ, McPherson JE. 2003. Voltinism and laboratory rearing of Microvelia hinei (Heteroptera: Gerromorpha: Veliidae). Gt Lakes Entomol. 36(1–2):1–9. DOI: https://doi.org/10.22543/0090-0222.2070
Team RC. c2019. R: a language and environment for statistical computing computer program, version 3.6. 1. R Core Team, Vienna, Austria.
Team Rs. c2020. RStudio: integrated development for R. RStudio, PBC, Boston, MA URL http//www.rstudio.com/.
Therneau T. c2016. A Package for Survival Analysis in S. version 2.38. 2015. Ref Source.
Toubiana W, Armisén D, Viala S, Decaras A, Khila A. 2021. The growth factor BMP11 is required for the development and evolution of a male exaggerated weapon and its associated fighting behavior in a water strider. PLOS Biol. 19(5):1–18. doi: https://doi.org/10.1371/journal.pbio.3001157 DOI: https://doi.org/10.1371/journal.pbio.3001157
Toubiana W, Khila A. 2019. Fluctuating selection strength and intense male competition underlie variation and exaggeration of a water strider’s male weapon. Proc R Soc B Biol Sci. 286:1–10. doi: https://doi.org/10.1098/rspb.2018.2400 DOI: https://doi.org/10.1098/rspb.2018.2400
Travers SE, Sih A. 1991. The Influence of Starvation and Predators on the Mating Behavior of a Semiaquatic Insect. Eccology. 72(6):2123–2136. doi: https://doi.org/10.2307/1941564 DOI: https://doi.org/10.2307/1941564
Van Driesche R, Hoddle M, Center T. 2008. Control of pests and weeds by natural enemies: an introduction to biological control. Oxford , UK: Blackwell Publishing
Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer. doi: https://doi.org/10.1007/978-3-319-24277-4 DOI: https://doi.org/10.1007/978-3-319-24277-4
Xiao TG, Tang JX. 2007. Effects of the susceptibility of rice varieties to Sogatella furcifera on nymphal development and reproduction of Microvelia horvathi through a food chain. Insect Sci. 14(4):317–321. doi: https://doi.org/10.1111/j.1744-7917.2007.00158.x DOI: https://doi.org/10.1111/j.1744-7917.2007.00158.x
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).