Publicado

2021-08-04

Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments

Efecto del gradiente matriz-borde-interior de bosque sobre la comunidad de murciélagos filostómidos en fragmentos de bosque subandino

DOI:

https://doi.org/10.15446/caldasia.v43n2.85071

Palabras clave:

Edge effects, fragmentation, phyllostomid bats, richness, Andean forests (en)
Efecto de Borde, fragmentación, murciélagos filostómidos, riqueza, bosques andinos (es)

Descargas

Autores/as

The edge effect is one of the consequences of forest fragmentation and is one of the main drivers of alteration of ecological and ecosystem processes. Trophic guilds and species of bats have shown differential responses to this phenomenon. Our goal was to describe the change in bat species richness, abundance, evenness, and species composition of trophic guilds associated with a matrix edge-forest interior gradient. Therefore, we conducted a bat sampling with 16 mist nets covering such gradient in four sub-andean forest fragments (10-50 ha). In total, we captured 566 individuals of 21 species of phyllostomid bats. Bat species richness and abundance were higher in the matrix and edge and were similar between fragments. Evenness showed the lowest values in the matrix and forest edge and was different between forest patches. Some shrub frugivorous bats were more abundant in the edge, and others were more abundant in two fragments. Species composition of canopy frugivorous bats was similar along the gradient but was significantly different between fragments. In contrast, the species composition of nectarivores was similar throughout the matrix-interior forest gradient and between patches. Our data suggest that bat responses at assemblage-level are affected by the disturbance gradient from the matrix to forest interior, even at short distances form fragment borders, and are dependent on the trophic guild.

El efecto de borde es una de las consecuencias de la fragmentación del bosque y es uno de los principales motores de alteración de procesos ecológicos y ecosistémicos. Las especies y gremios tróficos de murciélagos han mostrado diferentes respuestas a este fenómeno. El objetivo de este trabajo fue describir las relaciones entre el efecto de borde y la riqueza de especies, abundancia, equitatividad y composición de gremios de murciélagos asociados a un gradiente matriz-borde-interior de bosque. Para esto, se realizó un muestreo con 16 redes de niebla cubriendo dicho gradiente en cuatro fragmentos de bosque subandino (10 50 ha). En total, capturamos 566 individuos de 21 especies de filostómidos. La riqueza de especies y su abundancia fueron mayores en el borde y en la matriz, pero fueron similares entre los fragmentos. La equitatividad de las especies fue menor en la matriz y el borde, y fue diferente entre los fragmentos. Algunas especies de frugívoros de sotobosque fueron más abundantes en el borde yotras lo fueron en dos de los fragmentos. La composición de los frugívoros de dosel fue similar a lo largo del gradiente, pero difirió entre fragmentos. Por su parte, la composición de los nectarívoros fue similar alo largo del gradiente y entre los fragmentos. Nuestros resultados sugieren que las respuestas de los murciélagos a nivel comunitario son afectadas por el gradiente de disturbio desde la matriz hacia el interior del bosque, aún a cortas distancias del borde, y son dependientes del gremio trófico.

Referencias

August PV. 1981. Fig fruit consumption and seed dispersal by Artibeus jamaicensis in the Llanos of Venezuela. Biotropica. 13(2):70–76.

Avila-Cabadilla LD, Stoner KE, Henry M, Añorve MYA. 2009. Composition, structure and diversity of phyllostomid bat assemblages in different successional stages of a tropical dry forest. For. Ecol. Manage. 258(6):986–996. doi: https://doi.org/10.1016/j.foreco.2008.12.011

Berg CC, Rosselli PF, work(s): DWDR. 2005. Cecropia. Flora Neotrop. 94:1–230.

Bernard E, Fenton MB. 2007. Bats in a fragmented landscape: Species composition, diversity and habitat interactions in savannas of Santarém, Central Amazonia, Brazil. Biol Conserv. 134(3):332–343. doi: https://doi.org/10.1016/j.biocon.2006.07.021

Bianconi GV, Mikich SB, Pedro WA. 2006. Movements of bats (Mammalia, Chiroptera) in Atlantic Forest remnants in southern Brazil. Rev. Bras. Zool. 23(4):1199–1206. doi: https://doi.org/10.1590/S0101-81752006000400030

Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN. 2008. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141(7):1745–1757. doi: https://doi.org/10.1016/j.biocon.2008.04.024

Brose U, Martínez ND. 2004. Estimating the richness of species with variable mobility. Oikos. 105:292–300.

Brosset A, Charles-Dominique P, Cockle A, Cosson J-F, Masson D. 1996. Bat communities and deforestation in French Guiana. Can. J. Zool. 74(11):1974–1982. doi: https://doi.org/10.1139/z96-224

Cadena A, Anderson RP, Rivas-Pava P. 1998. Colombian mammals from the chocoan slopes of Nariño. Occasional Papers Museum of Texas Tech University. 108:1–15.

Camargo C, Vargas S. 2006. La relación dispersor-planta de aves frugívoras en zonas sucesionales tempranas como parte de la restauración natural del bosque subandino (Reserva Biológica Cachalú, Santander, Colombia). In: Solano C, Vargas N, editors. Memorias del I Simposio Internacional de Robles y ecosistemas asociados. Bogotá, D.C, Colombia: Fundación Natura Colombia-Pontificia Univesidad Javeriana. p. 157–172.

Castro-Luna AA, Sosa VJ, Castillo-Campos G. 2007. Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south-eastern Mexico. Anim. Conserv. 10(2):219–228. doi: https://doi.org/10.1111/j.1469-1795.2007.00097.x

Chazdon RL. 2014. Second growth: The promise of tropical forest regeneration in an age of deforestation. Chicago: University of Chicago Press.

Colwell RK. c2013. EstimateS 9.1.0. User’s Guide and Application. University of Connecticut. [Last accessed: 15 Dec 2019]. http://viceroy.eeb.uconn.edu/estimates/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm

Cortés-Delgado N, Pérez-Torres J. 2011. Habitat edge context and the distribution of phyllostomid bats in the Andean forest and anthropogenic matrix in the Central Andes of Colombia. Biodivers. Conserv. 20(5):987–999. doi: https://doi.org/10.1007/s10531-011-0008-1

Cosson J-F, Pons J-M, Masson D. 1999. Effects of forest fragmentation on frugivorous and nectarivorous bats in French Guiana. J. Trop. Ecol. 15(4):515–534.

Delaval M, Charles-Dominique P. 2006. Edge effects on frugivorous and nectarivorous bat communities in a Neotropical primary forest in French Guiana. Rev. Ecol. 61:343–352.

Didham RK, Lawton JH. 1999. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica. 31(1):17. doi: https://doi.org/10.2307/2663956

Estrada A, Coates-Estrada R. 2002. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol. Conserv. 103(2):237–245. doi: https://doi.org/10.1016/S0006-3207(01)00135-5

Estrada-Villegas S, Pérez-Torres J, Stevenson PR. 2010. Ensamblaje de murciélagos en un bosque subandino colombiano y análisis sobre la dieta de algunas especies. Mastozool. Neotrop. 17:31–41.

Faria D. 2006. Phyllostomid bats of a fragmented landscape in the north-eastern Atlantic forest, Brazil. J. Trop. Ecol. 22(5):531–542. doi: https://doi.org/10.1017/S0266467406003385

Faria D, Laps RR, Baumgarten J, Cetra M. 2006. Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic forest of Southern Bahia, Brazil. Biodivers. Conserv. 15(2):587–612. doi: https://doi.org/10.1007/s10531-005-2089-1

Faria D, Mariano-Neto E, Martini AMZ, Ortiz JV, Montingelli R, Rosso S, Paciencia MLB, Baumgarten J. 2009. Forest structure in a mosaic of rainforest sites: The effect of fragmentation and recovery after clear cut. For. Ecol. Manage. 257(11):2226–2234. doi: https://doi.org/10.1016/j.foreco.2009.02.032

Fenton MB, Acharya L, Audet D, Hickey MBC, Merriman C, Obrist MK, Syme DM, Adkins B. 1992. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica. 24(3):440. doi: https://doi.org/10.2307/2388615

Fletcher Jr RJ, Ries L, Battin J, Chalfoun AD. 2007. The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can. J. Zool. 85(10):1017–1030. doi: https://doi.org/10.1139/Z07-100

García-Morales R, Badano EI, Moreno CE. 2013. Response of Neotropical Bat Assemblages to Human Land Use: Bat Responses to Habitat Modification. Conserv. Biol. 27(5):1096–1106. doi: https://doi.org/10.1111/cobi.12099

Giannini NP, Kalko EKV. 2004. Trophic structure in a large assemblage of phyllostomid bats in Panama. Oikos. 105(2):209–220. doi: https://doi.org/10.1111/j.0030-1299.2004.12690.x

Gorresen PM, Willig MR. 2004. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. J. Mammal. 85(4):688–697. doi: https://doi.org/10.1644/BWG-125

Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1(2):e1500052. doi: https://doi.org/10.1126/sciadv.1500052

Handley CO, Wilson DE, Gardner AL. 1991. Demography and natural history of the common fruit bat, Artibeus jamaicensis, on Barro Colorado Island, Panamá. Washington, DC: Smithsonian Institution Press (Smithsonian Contributions to Zoology).

Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biomet. J. 50(3):346–363.

Hsieh TC, Ma KH, Chao A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). McInerny G, editor. Methods. Ecol. Evol. 7(12):1451–1456. doi: https://doi.org/10.1111/2041-210X.12613

Jantzen MK, Fenton MB. 2013. The depth of edge influence among insectivorous bats at forest–field interfaces. Can. J. Zool. 91(5):287–292. doi: https://doi.org/10.1139/cjz-2012-0282

Kalko EKV. 1998. Organization and diversity of tropical bat communities through space and time. Zoology. 101:281–297.

Kalko EKV, Handley CO. 2001. Neotropical bats in the canopy: diversity, community structure, and implications for conservation. Plant Ecol. 153:319–333. doi: https://doi.org/10.1007/978-94-017-3606-0_26

Kalko EKV, Handley CO, Handley D. 1996. Organization, diversity and long-term dynamics of a neotropical bat community. In: Cody ML, Smallwood JA, editors. Long-term studies of vertebrate communities. San Diego: Academic Press. p. 503–553.

Klingbeil BT, Willig MR. 2009. Guild-specific responses of bats to landscape composition and configuration in fragmented Amazonian rainforest. J. Appl. Ecol. 46(1):203–213. doi: https://doi.org/10.1111/j.1365-2664.2008.01594.x

Laurance W. 2000. Do edge effects occur over large spatial scales? Trends Ecol. Evol. 15(4):134–135.

Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E. 2002. Ecosystem Decay of Amazonian Forest Fragments: a 22-Year Investigation. Conserv. Biol. 16(3):605–618. doi: https://doi.org/10.1046/j.1523-1739.2002.01025.x

Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM, Harms KE, Luizão RCC, Ribeiro JE. 2007. Habitat Fragmentation, variable edge effects, and the landscape-divergence hypothesis. Bennett P, editor. Plos One. 2(10):e1017. doi: https://doi.org/10.1371/journal.pone.0001017

Law BS, Yerson J, Chidel M. 1999. Bat communities in a fragmented forest landscape on the south-west slopes of New South Wales, Australia. Biol. Conserv. 88:333–345.

Lippok D, Beck SG, Renison D, Hensen I, Apaza AE, Schleuning M. 2014. Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Nakashizuka T, editor. J. Veg. Sci. 25(3):724–733. doi: https://doi.org/10.1111/jvs.12132

Magurran AE. 1988. Ecological diversity and its measurement. London, UK: Chapman & Hall. Meyer CFJ, Kalko EKV. 2008. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J. Biogeogr. 35(9):1711–1726. doi: https://doi.org/10.1111/j.1365-2699.2008.01916.x

Meyer CFJ, Struebig MJ, Willig MR. 2016. Responses of tropical bats to habitat fragmentation, logging and deforestation. In: Voigt C, Kingston T, editors. Bats in the anthropocene: Conservation of bats in a changing world. Springer Open. p. 63–105.

Montaño-Centellas F, Moya MI, Aguirre LF, Galeón R, Palabral O, Hurtado R, Galarza I, Tordoya J. 2015. Community and species-level responses of phyllostomid bats to a disturbance gradient in the tropical Andes. Acta Oecol. 62:10–17. doi: https://doi.org/10.1016/j.actao.2014.11.002

Mora-Beltrán C, López-Arévalo HF. 2018. Interactions between bats and floral resources in a premontane forest, Valle del Cauca, Colombia. Therya. 9(2):129–136. doi: https://doi.org/10.12933/therya-18-560

Moreno C, Halffter G. 2001. Spatial and temporal analysis of α, β and γ diversities of bats in a fragmented landscape. Biodivers. Conserv. 10:367–382.

Murcia C. 1995. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 10(2):58–62.

Numa C, Verdu JR, Sánchez-Palomino P. 2005. Phyllostomid bat diversity in a variegated coffee landscape. Biol. Conserv. 122:151–158.

Otálora-Ardila A, López-Arévalo HF. 2006. Incidencia de algunos elementos del paisaje fragmentado de Encino (Santander, Colombia) sobre la riqueza y diversidad de murciélagos. In: Solano C, Vargas Tovar N, editors. Memorias del I seminario internacional de Roble y ecosistemas asociados. Bogotá: Fundación Natura Colombia Pontificia Universidad Javeriana. p. 83–95.

Pereira MJR, Marques JT, Palmeirim JM. 2010. Vertical stratification of bat assemblages in flooded and unflooded Amazonian forests. Curr. Zool. 56(4):469–478. doi: https://doi.org/10.1093/czoolo/56.4.469

Pérez-Torres J, Ahumada JA. 2004. Murciélagos en bosques alto-andinos, fragmentados y continuos, en el sector occidental de la Sabana de Bogotá (Colombia). Universitas Scientiarum. 9:33–46.

R Core Team. c2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Last accessed: 13 Aug 2020]. http://www.R-project.org

Reis N, Muller M. 1995. Bat diversity of forests and open areas in a subtropical region of South Brazil. Ecol. Austral. 5:31–36.

Ries L, Murphy SM, Wimp GM, Fletcher RJ. 2017. Closing persistent gaps in knowledge about edge ecology. Curr. Landscape Ecol. Rep. 2(1):30–41. doi: https://doi.org/10.1007/s40823-017-0022-4

Rocha R, López-Baucells A, Farneda FZ, Ferreira DF, Silva I, Acácio M, Palmeirim JM, Meyer CFJ. 2020. Second-growth and small forest clearings have little effect on the temporal activity patterns of Amazonian phyllostomid bats. Curr. Zool. 66(2):145–153. doi: https://doi.org/10.1093/cz/zoz042

Rocha R, López-Baucells A, Farneda FZ, Groenenberg M, Bobrowiec PED, Cabeza M, Palmeirim JM, Meyer CFJ. 2017. Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects. Landscape Ecol. 32(1):31–45. doi: https://doi.org/10.1007/s10980-016-0425-3

Rodríguez Eraso N, Armenteras-Pascual D, Alumbreros JR. 2013. Land use and land cover change in the Colombian Andes: dynamics and future scenarios. J. Land Use Sci. 8(2):154–174. doi: https://doi.org/10.1080/1747423X.2011.650228

Rodríguez-Posada ME. 2010. Murciélagos de un bosque en los andes centrales de Colombia con notas sobre su taxonomía y distribución. Caldasia 32(1):205–220.

Sáenz Jiménez FA. 2010. Aproximación a la fauna asociada a los bosques de roble del corredor Guantiva - La Rusia - Iguaque (Boyacá-Santander, Colombia). Colomb. For. 13(2):299–344. doi: https://doi.org/10.14483/udistrital.jour.colomb.for.2010.2.a08

Saunders DA, Arnold GW, Burbidge AA, Hopkins AJM. 1987. The role of remnants of native vegetation in nature conservation: Future directions. In: Saunders DA, Arnold GW, Burbidge AA, Hopkins AJM, editors. Nature conservation: the role of remnants of native vegetation. Surrey Beatty & Sons Pty Limited. p. 387–392.

Schulze MD, Seavy NE, Whitacre DF. 2000. A comparison of the phyllostomid bat assemblages in undisturbed neotropical forest and in forest fragments of a slash-and-burn farming mosaic in Peten, Guatemala. Biotropica. 32(1):174–184.

Solano C. 2006. Reserva Biológica Cachalú: 10 años de investigación en bosques de roble. In: Solano C, Vargas N, editors. Memorias del I Simposio Internacional de Roble y Ecosistemas Asociados. Bogotá, D.C, Colombia: Fundación Natura Colombia Pontificia Universidad Javeriana. p. 11–23.

Solano C, Roa C, Calle Z, editors. 2005. Estrategia de desarrollo sostenible: Corredor de conservación Guantiva-La Rusia-Iguaque, Boyacá-Santander (Colombia). Bogotá, D.C, Colombia: Fundación Natura.

Soriano PJ. 2000. Functional structure of bat communities in tropical rainforests and andean cloud forests. Ecotropicos. 13(1):1–20.

Valladares G, Salvo A, Cagnolo L. 2006. Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv. Biol. 20:212–217.

Wang Y, Naumann U, Wright S, Warton D. c2019. mvabund: statistical methods for analysing multivariate abundance data. R package version 4.0.1. [Last accessed: 13 Aug 2020]. http://CRAN.R- project.org/package=mvabund

Williams-Guillén K, Perfecto I. 2010. Effects of Agricultural Intensification on the Assemblage of Leaf-Nosed Bats (Phyllostomidae) in a Coffee Landscape in Chiapas, Mexico: Phyllostomid Diversity in Shade Coffee Plantations. Biotropica. 42(5):605–613. doi: https://doi.org/10.1111/j.1744-7429.2010.00626.x

Willig MR, Presley SJ, Bloch CP, Hice CL, Yanoviak SP, Díaz MM, Chauca LA, Pacheco V, Weaver SC. 2007. Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance. Biotropica. 39(6):737–746. doi: https://doi.org/10.1111/j.1744-7429.2007.00322.x

Zortéa M, Alho CJR. 2008. Bat diversity of a Cerrado habitat in central Brazil. Biodivers. Conserv. 17(4):791–805. doi: https://doi.org/10.1007/s10531-008-9318-3

Cómo citar

APA

Otálora Ardila, A. y López Arévalo, H. F. (2021). Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments. Caldasia, 43(2), 274–285. https://doi.org/10.15446/caldasia.v43n2.85071

ACM

[1]
Otálora Ardila, A. y López Arévalo, H.F. 2021. Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments. Caldasia. 43, 2 (jul. 2021), 274–285. DOI:https://doi.org/10.15446/caldasia.v43n2.85071.

ACS

(1)
Otálora Ardila, A.; López Arévalo, H. F. Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments. Caldasia 2021, 43, 274-285.

ABNT

OTÁLORA ARDILA, A.; LÓPEZ ARÉVALO, H. F. Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments. Caldasia, [S. l.], v. 43, n. 2, p. 274–285, 2021. DOI: 10.15446/caldasia.v43n2.85071. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/85071. Acesso em: 28 mar. 2024.

Chicago

Otálora Ardila, Aída, y Hugo Fernando López Arévalo. 2021. «Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments». Caldasia 43 (2):274-85. https://doi.org/10.15446/caldasia.v43n2.85071.

Harvard

Otálora Ardila, A. y López Arévalo, H. F. (2021) «Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments», Caldasia, 43(2), pp. 274–285. doi: 10.15446/caldasia.v43n2.85071.

IEEE

[1]
A. Otálora Ardila y H. F. López Arévalo, «Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments», Caldasia, vol. 43, n.º 2, pp. 274–285, jul. 2021.

MLA

Otálora Ardila, A., y H. F. López Arévalo. «Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments». Caldasia, vol. 43, n.º 2, julio de 2021, pp. 274-85, doi:10.15446/caldasia.v43n2.85071.

Turabian

Otálora Ardila, Aída, y Hugo Fernando López Arévalo. «Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments». Caldasia 43, no. 2 (julio 1, 2021): 274–285. Accedido marzo 28, 2024. https://revistas.unal.edu.co/index.php/cal/article/view/85071.

Vancouver

1.
Otálora Ardila A, López Arévalo HF. Effect of the matrix-edge-forest interior gradient on the phyllostomid bats assemblage in sub-Andean forest fragments. Caldasia [Internet]. 1 de julio de 2021 [citado 28 de marzo de 2024];43(2):274-85. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/85071

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Aída Otálora-Ardila, Fábio Z. Farneda, Christoph F. J. Meyer, Hugo F. López-Arévalo, Jaime Polanía, Carolina Gómez-Posada. (2024). Trait-mediated filtering predicts phyllostomid bat responses to habitat disturbance in the Orinoco Llanos. Biodiversity and Conservation, https://doi.org/10.1007/s10531-024-02792-2.

2. Camila A. Díaz-B, Aída Otálora-Ardila, María Camila Valdés-Cardona, Hugo F. López-Arévalo, Olga L. Montenegro. (2023). Bat functional traits associated with environmental, landscape, and conservation variables in Neotropical dry forests. Frontiers in Forests and Global Change, 6 https://doi.org/10.3389/ffgc.2023.1082427.

Dimensions

PlumX

Visitas a la página del resumen del artículo

675

Descargas

Los datos de descargas todavía no están disponibles.