Publicado

2020-12-29

Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México

Community structure of canopy springtails (Hexapoda) from a montane cloud forest of Hidalgo, Mexico

DOI:

https://doi.org/10.15446/caldasia.v43n1.85130

Palabras clave:

Efecto de borde, Fumigación, Piretrinas, Variación estacional (es)
Edge effect, fogging’s, piretrines, seasonality (en)

Descargas

Autores/as

Se estudió la diversidad, riqueza y abundancia de Collembola, en el dosel de un bosque mesófilo en el Estado de Hidalgo, México, durante las estaciones lluviosa y seca de 2004 y 2005, mediante fumigaciones con Piretrinas naturales en tres áreas: una en la zona de borde cerca del camino, otra ubicada a una distancia intermedia, y la tercera en la zona más interna y conservada. Se recolectó un total de 5267 colémbolos representando once familias y 22 géneros, de ellos 4377 (83 %) corresponden a la temporada de lluvias, y 890 (17 %) a la de sequía. Las familias con mayor abundancia fueron Hypogasturidae (con casos como Schoettella distincta y Xenylla sp.), Entomobryidae (Entomobrya sp., Orchesella sp. y Willowsia mexicana), Paronellidae (Salina sp.) y Dicyrtomidae (Dicyrtoma sp.). En la zona interna se recolectaron 1586 (30 %) colémbolos y la mayor abundancia se registró en la zona intermedia, con 2157 (41 %) especímenes. Los valores menores fueron para el área de borde con 1527 (29 %) ejemplares. Se calcularon también los índices de diversidad y equitatividad, y el efecto de la temporada de recolección y sitio sobre la abundancia. Se encontraron diferencias significativas en la abundancia, composición y diversidad de las comunidades en las dos estaciones, y el efecto de borde también tiene una influencia significativa en la composición de la comunidad de colémbolos del dosel, con mayor cantidad de grupos considerados como cosmopolitas en la zona de borde.

Diversity, richness, and abundance of Collembola communities from the canopy of a montane cloud forest at Hidalgo State, Mexico were studied, through the rainy and drought seasons in 2004 and 2005, using natural piretrine insecticide in three areas: one at the border close to the road, a second one at an intermediate distance, and a third one in the internal and better preserved area. A total of 5267 springtails from eleven families and 22 genera were obtained, of them, 4377 (83 %) belong to the rainy season, and 890 (17 %) at drought. Most abundant families were Hypogasturidae (with cases such as Schoettella distincta and Xenylla sp.), Entomobryidae (Entomobrya sp., Orchesella sp. and Willowsia mexicana), Paronellidae (Salina sp.), and Dicyrtomidae (Dicyrtoma sp.). In the internal area, 1586 (30 %) springtails were collected, the highest abundance was presented at the intermediate area with 2157 (41 %) specimens. The lowest amount was recorded at the border area with 1527 (29 %). Diversity and equitability indexes were calculated and the effect of sampling season and site on the abundance of Collembola were estimated. A significant variation in composition, abundance, and diversity of the community was observed between both seasons, and the border effect has a significant influence in springtails composition in the canopy, with more cosmopolite groups in the border area.

Referencias

Baev PV, Penev LD. 1995. BIODIV: program for calculating biological diversity parameters, similarity, niche overlap, and cluster analysis: Version 5.1. Moscú, Rusia: Pensoft.

Basset Y, Horlyck V. Wright J. 2003. Forest canopies and their importance. En: Basset Y, Horlyck V, Wright J, editores. Studying Forest Canopies from Above: The International Canopy Crane Network. Panamá, Panamá: Smithsonian Tropical Research Institute and UNEP. p. 27–34.

Bellinger PF, Christiansen KA, Janssens F. c2018. Checklist of the Collembola of the World. [Revisada en: 15 Dic 2018]. http://www.collembola.org

Bretfeld G. 1994. Sturmius epiphytus n. gen. n. spec. from Colombia, a taxon of the Symphypleona (Insecta, Collembola) with than unexpected character combination. Description and position in non-Linnean and Linnean classifications of the Symphypleona. J. Zool. Syst. Evol. Res. 32(4): 264−281. doi: https://doi.org/10.1111/j.1439-0469.1994.tb00487.x

Castaño-Meneses G, Basset Y, Winchester N, Barrios H. 2006. Colémbolos (Hexapoda: Collembola) del dosel en la selva tropical de San Lorenzo, Provincia de Colón, Panamá. Ent. Mex. 5 (1): 480-496.

Castaño-Meneses G, Palacios-Vargas JG. 2011. A new species of the family Stumiidae (Collembola: Symphypleona) from Panama. Zootaxa. 2923 (1): 59-66. doi: https://doi.org/10.11646/zootaxa.2923.1.4

Christiansen KA, Bellinger PF. 1980-81. The Collembola of North America North of the Rio Grande, Grinnell College, Iowa, p.1-1520.

Colwell RK. 2013. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application. http://viceroy.eeb.uconn.edu/estimates

Erwin TL. 1983. Tropical forest canopies: the last biotic frontier. Bull. Entomol. Soc. Am. 29(1): 14-20. doi: https://doi.org/10.1093/besa/29.1.14

Erwin TL. 1995. Measuring arthropod biodiversity in the tropical forest canopy. En Lowman M D, Nadkarni N M, editors. Forest Canopies. San Diego: Academic Press. p. 109-127. doi: https://doi.org/10.1007/bf00044643

García E. 1981. Modificaciones al sistema de clasificación climática de Köppen. México: Instituto de Geografía, UNAM. García E. 2004. Modificaciones al sistema de clasificación climática de Köppen, 5ª edición, Serie Libros Núm. 6. Distrito Federal, México: Instituto de Geografía, UNAM.

Guilbert E, Baylac M, Najt J. 1995. Canopy Arthropod Diversity in a New Caledonian Primary forest sampled by fogging. Pan-Pac. Entomol. 71 (1): 3-12.

Heino M, Kummu M, Makkonen M, Mulligan M, Verburg PH, Jalava M, Räsänen TA. 2015. Forest loss in protected areas and intact forest landscapes: a global analysis. PLoS ONE, 10: e0138918. doi: https://doi.org/10.1371/journal.pone.0138918

Holland J, Fahrig L. 2000. Effect of woody borders on insect density and diversity in crop fields: a landscape-scale analysis. Agric. Ecosyst. Environ. 78(2): 115-122. doi: https://doi.org/10.1016/S0167-8809(99)00123-1

Kitching RL, Bergelson JM, Lowman MD, McIntyre S, Carruthers G. 1993. The biodiversity of arthropod rain forest canopies general introduction, method sites and ordinal result. Aust. J. Ecol. 18(2): 181-191. doi: https://doi.org/10.1111/j.1442-9993.1993.tb00442.x

Koike T, Kitao M, Muruyama Y, Mori S, Lei TT. 2001. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiol. 21(12-13): 951-958. Doi: https://doi.org/10.1093/treephys/21.12-13.951

Lindo Z, Winchester NN. 2009. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 169: 817-825. doi: https://doi.org/10.1007/s00442-009-1348-3

Luna I, Alcántara O. 2004. Florística del bosque mesófilo de montaña de Hidalgo. En: Luna I, Morrone JJ, Espinosa D, editores. Biodiversidad de la Sierra Madre Oriental. D.F. México: CONABIO–UNAM. p. 169-192.

Luna I, Ocegueda S, Alcántara O. 1994. Florística y notas biogeográficas del Bosque Mesófilo de Montaña del municipio de Tlanchinol, Hidalgo, México. An. Inst. Biol. UNAM, Serie Botánica. 65(1): 31 -62.

Luna Vega I, Alcántara Ayala O, Espinosa Organista D, Morrone JJ. 1999. Historical relationships of the Mexican cloud forest: A preliminary vicariance model applying parsimony analysis of endemicity to vascular plant taxa. J. Biogeog. 26(6): 1299-1306. doi: https://doi.org/10.1046/j.1365-2699.1999.00361.x

Luna I, Alcántara O, Morrone JJ, Espinosa D. 2000. Track analysis and conservation priorities in the cloud forests of Hidalgo, Mexico. Divers. Distrib. 6:137-143

Márquez J, Asiain J, Martínez-Falcón AP, Escoto-Moreno J. 2019. Coleoptera in the canopy of the cloud forest from Tlanchinol in the State of Hidalgo, Mexico. Environ. Entomol. 48(4): 1012-1023. doi: https://doi.org/10.1093/ee/nvz059

McAleece N. 1997. Biodiversity Professional beta. Version 2.0. Oban, Reino Unido: The Natural History Museum and Scottish Association for Marin Science.

Mesquita RCG, Delamonica P, Laurance WF. 1999. Effect of surrounding vegetation on edge-related tree mortality in Amazonian forest fragments. Biol. Conserv. 91(2-3): 129-134. doi: https://doi.org/10.1016/S0006-3207(99)00086-5

Moreno CE, Halffter G. 2001. Spatial and temporal analysis of the, β, and γ diversities of bats in a fragmented landscape. Biodiv. Conserv. 10: 367-382. doi: https://doi.org/10.1023/A:1016614510040

Nadkarni N. 1995. Good-bye, Tarzan. The science of life in the treetops gest down to business. Sciences. 35(1): 28-33. doi: https://doi.org/10.1002/j.2326-1951.1995.tb03787.x

Nadkarni NM, Solano R. 2002. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia. 131: 580.586. doi: https://doi.org/10.1007/s00442-002-0899-3

Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma K, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song L, Wang H, Ashton LA. 2017. Forest and their canopies: achievements and horizons in canopy science. TREE 32 (6): 438-451. doi: https://doi.org/10.1016/j.tree.2017.02.020

Ortega F, Castillo G. 1996. El bosque mesófilo de montaña y su importancia forestal. Ciencias. 43: 32-39.

Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva PL, Stork NE, Wright SJ, Yoshimura M. 2003. Biodiversity meets the atmosphere: a global view of forest canopies. Science 301 (5630): 183-186. doi: https://doi.org/10.1126/science.1084507

Palacios-Vargas JG, Castaño-Meneses G. 2003. Seasonality and community composition of springtails in Mexican forest. En: Basset Y, Novotny V, Miller S E, Kitching R L, editors. Arthropods of Tropical Forests. Cambridge: Cambridge University Press. p. 159-169.

Palacios-Vargas JG, Castaño-Meneses G, Gómez-Anaya JA. 1998. Collembola from de canopy of tropical deciduous forest. Pan–Pac. Entomol. 74(1): 47-54.

Palacios-Vargas JG, Castaño-Meneses G, Pescador A. 1999. Phenology of canopy arthropods of a tropical deciduous forest in western Mexico. Pan-Pac. Entomol. 75(4): 200-211.

Palacios-Vargas JG, González V. 1995. Two new species of Deuterosminthurus (Bourletiellidae), epiphytic Collembola from the Neotropical region with a key for the American species. Flo. Entomol. 78 (2): 286-294. doi: https://doi.org/10.2307/3495901

Palacios-Vargas JG, Hornung-Leoni CT, Garrido I. 2012. Collembola in epiphytic bromeliads (Tillandsia imperialis: Bromeliacea) from Hidalgo, Mexico and description of a new Sminthurinus (Collembola: Katiannidae). Brenesia. 78: 58-64.

Puig H. 1976. Vegétation de la Huasteca, Mexique. Mission Archéologique et Ethnologique Française au Mexique. Vol. V. París, Francia: C.N.R.S.

Rodgers DJ, Kitching RL. 1998. Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: description of ecological patterns and hypotheses concerning their generation. Ecography 21 (4): 392-400. doi: https://doi.org/10.1111/j.1600-587.1998.tb00404.x

Rodgers DJ, Kitching RL. 2011. Rainforest Collembola (Hexapoda: Collembola) and the insularity of epiphyte microhabitats. Insect Conserv. Diver. 4(2): 99-106. doi: https://doi.org/10.1111/j.1752-4598.2010.00104.x

Rzedowski J. 1996. Análisis preliminar de la flora vascular de los bosques mesófilos de México. Acta Bot. Mex. 35: 25-44. [SEDESOL] Secretaría de Desarrollo Social. 2002. Municipios de Hidalgo. Tlanchinol. Hidalgo, México: Secretaría de Desarrollo Social.

Shaw P, Ozanne C, Speight M, Palmer I. 2007. Edge effects and arboreal Collembola in coniferous plantations. Pedobiologia. 51(4): 287-293. doi: https://doi.org/10.1016/j.pedobi.2007.04.010

Statsoft. 2009. Statistical user guide: complete statistical system StatSoft. Oklahoma, USA: StatSoft.

Stork NE, McBroom J, Gely C, Hamilton AJ. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. PNAS. 112(24): 7519-7523. doi: https://doi.org/10.1073/pnas.1502408112

Solow AR. 1993. A simple test for change in community structure. J. Anim. Ecol. 62(1): 191-193. doi: https://doi.org/10.2307/5493

Southwood TRE. 1978. The components diversity. En: Mound L A, Walsff N, editors. Symposia of the Royal Entomological Society: Diversity of insect faunas. Oxford, U.K.: Blackwell Scientific Publications. p. 19-40.

Tabarelli M, Da Silva JMC, Gascon C. 2004. Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers. Conserv. 13: 1419-1425. doi: https://doi.org/10.1023/B:BIOC.0000019398.36045.1b

Walter DE, Behan-Pelletier V. 1999. Mites in forest canopies: filling the size distribution shortfall? Ann. Rev. Entomol. 44: 1-19. doi: https://doi.org/10.5194/bgd-12-10985-2015

Wedeux BMM, Coomes DA. 2015. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp. Biogeosciences 12: 10985-11018. doi: https://doi.org/10.5194/bgd-12-10985-2015

Williams-Linera G. 1990. Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78(2): 356-373. doi: https://doi.org/10.2307/2261117

Williams-Linera G. 2002. Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodivers. Conserv. 11: 1825-1843. doi: https://doi.org/10.1023/A:1020346519085

Winchester NN, Behan-Pelletier VM, Ring RA. 1999. Arboreal specificity, diversity and abundance of canopy-dwelling oribatid mites (Acari: Oribatida). Pedobiologia 43: 1-10.

Winchester NN, Lindo Z, Behan-Pelletier VM. 2008. Oribatid Mite Communities in the Canopy Montane Abies amabilis and Tsugaheterophylla trees on Vancouver Island, British Columbia. Envirom. Entomol. 37(2): 464 – 470. doi: https://doi.org/10.1093/ee/37.2.464

Wirth R, Weber B, Ryel RJ. 2001. Spatial and temporal variability of canopy structure in a tropical moist forest. Acta Oecol. 22(5-6): 235-244. doi: https://doi.org/10.1016/S1146-609X(01)01123-7

Yoshida T, Hijii N. 2005. Vertical distribution and seasonal dynamics of arboreal collembolan communities in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Pedobiologia. 49(5): 425-434. doi: https://doi.org/10.1016/j.pedobi.2005.05.001

Cómo citar

APA

Palacios-Vargas, J. G., Castaño-Meneses, G. y Valladares, L. . (2021). Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México. Caldasia, 43(1), 149–160. https://doi.org/10.15446/caldasia.v43n1.85130

ACM

[1]
Palacios-Vargas, J.G., Castaño-Meneses, G. y Valladares, L. 2021. Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México. Caldasia. 43, 1 (ene. 2021), 149–160. DOI:https://doi.org/10.15446/caldasia.v43n1.85130.

ACS

(1)
Palacios-Vargas, J. G.; Castaño-Meneses, G.; Valladares, L. . Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México. Caldasia 2021, 43, 149-160.

ABNT

PALACIOS-VARGAS, J. G.; CASTAÑO-MENESES, G.; VALLADARES, L. . Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México. Caldasia, [S. l.], v. 43, n. 1, p. 149–160, 2021. DOI: 10.15446/caldasia.v43n1.85130. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/85130. Acesso em: 28 mar. 2024.

Chicago

Palacios-Vargas, José Guadalupe, Gabriela Castaño-Meneses, y Leticia Valladares. 2021. «Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México». Caldasia 43 (1):149-60. https://doi.org/10.15446/caldasia.v43n1.85130.

Harvard

Palacios-Vargas, J. G., Castaño-Meneses, G. y Valladares, L. . (2021) «Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México», Caldasia, 43(1), pp. 149–160. doi: 10.15446/caldasia.v43n1.85130.

IEEE

[1]
J. G. Palacios-Vargas, G. Castaño-Meneses, y L. . Valladares, «Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México», Caldasia, vol. 43, n.º 1, pp. 149–160, ene. 2021.

MLA

Palacios-Vargas, J. G., G. Castaño-Meneses, y L. . Valladares. «Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México». Caldasia, vol. 43, n.º 1, enero de 2021, pp. 149-60, doi:10.15446/caldasia.v43n1.85130.

Turabian

Palacios-Vargas, José Guadalupe, Gabriela Castaño-Meneses, y Leticia Valladares. «Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México». Caldasia 43, no. 1 (enero 1, 2021): 149–160. Accedido marzo 28, 2024. https://revistas.unal.edu.co/index.php/cal/article/view/85130.

Vancouver

1.
Palacios-Vargas JG, Castaño-Meneses G, Valladares L. Estructura de la comunidad de colémbolos (Hexapoda) del dosel de un bosque mesófilo en Hidalgo, México. Caldasia [Internet]. 1 de enero de 2021 [citado 28 de marzo de 2024];43(1):149-60. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/85130

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Yunga Wu, Zhijing Xie, Zhuoma Wan, Qiao-Qiao Ji, Jingjing Yang, Ting-Wen Chen, Donghui Wu, Stefan Scheu. (2023). Elevational changes in canopy Collembola community composition are primarily driven by species turnover on Changbai Mountain, northeastern China. Biodiversity and Conservation, 32(14), p.4853. https://doi.org/10.1007/s10531-023-02734-4.

Dimensions

PlumX

Visitas a la página del resumen del artículo

381

Descargas

Los datos de descargas todavía no están disponibles.