Publicado

2022-06-24

Human density and sampling time explain richness of anurans in the brazilian biomes

La densidad humana y el tiempo de muestreo explican la riqueza de anuros en los biomas brasileños

DOI:

https://doi.org/10.15446/caldasia.v44n2.86114

Palabras clave:

Diversity, amphibian, climate, demography, human footprint (en)
Diversidad, anfibios, clima, demografía, huella humana (es)

Descargas

Autores/as

Anuran richness patterns are strongly influenced by environmental factors. However, investigations on this issue have focused on the influence of abiotic factors without considering the joint effect of many existing variables, including the data sampling methodology and human demography. In this study we investigated the relationship between 21 environmental variables and anuran richness in brazilian biomes. Environmental variables represent a combination of human demographics, topographic, climatic and vegetation characteristics, and data sampling methodologies. We used principal component factorization and regressive and autoregressive models to select the most relevant variables for explaining anuran richness. Richness was correlated with demographic density, vegetation, accumulated rainfall, accumulated rainfall in the third and fourth quarter of the year, and accumulated rainfall in the first and second half of the year. However, the regressive and autoregressive models showed that human demographic density, sampling time, and sampling methodology were the best predictors of anuran richness. Our results highlight the importance of considering the effects of the human footprint and the methodology used for data collection on anuran species richness.

Los patrones de riqueza de anuros están fuertemente influenciados por factores ambientales. Sin embargo, las investigaciones en este sentido se han concentrado en la influencia de factores abióticos, sin considerar, el efecto colectivo de otras variables como la metodología de muestreo y la demografía humana. En este estudio analizamos la relación entre 21 variables ambientales y la riqueza de anuros en los biomas brasileños. Las variables ambientales representan una combinación de datos demográficos de tipo humano, topográfico, vegetal, climático y de la metodología de muestreo. Se utilizan, en el presente estudio, la factorización en los componentes principales y modelos de regresión y de autorregresión para seleccionar las variables más relevantes en la explicación de la riqueza de anuros. La riqueza estuvo correlacionada con la densidad demográfica, la vegetación, la lluvia acumulada, la lluvia acumulada en los terceros y cuartos trimestres del año y la lluvia acumulada en el primero y segundo semestres del año. Sin embargo, los modelos de regresión y de autorregresión nos enseñan que la densidad demográfica, el tiempo de muestreo y la metodología de muestreo son las mejores predictoras de riqueza de anuros. Nuestros resultados evidencian la importancia de tener en cuenta los efectos de la huella humana y de la metodología empleada en la recolección de datos sobre la riqueza de especies de anuros.

Referencias

Aichinger M. 1987. Annual activity patterns of anurans in seasonal Neotropical environment. Oecologia 71: 583–592. doi: http://doi.org/10.1007/BF00379302 DOI: https://doi.org/10.1007/BF00379302

Assunção-Albuquerque MJT, Rey Benayas JM, Rodríguez MA, Albuquerque FS. 2012. Geographic patterns of vertebrate diversity and identification of relevant areas for conservation in Europe. Anim. Biodiv. Conserv. 35(1): 1–11. http://doi.org/10.32800/abc.2012.35.0001 DOI: https://doi.org/10.32800/abc.2012.35.0001

Azevedo-Ramos C, Galatti U. 2002. Patterns of amphibian diversity in Brazilian Amazonia: conservation implications. Biol. Conserv. 103(1): 103–111. doi: http://doi.org/10.1016/S0006-3207(01)00129-X DOI: https://doi.org/10.1016/S0006-3207(01)00129-X

Bertoluci J, Rodrigues MT. 2002. Seasonal patterns of breeding activity of Atlantic Rainforest anurans at Boracéia, Southeastern Brazil. Amphibia-Reptilia 23(2): 161–167. doi: http://doi.org/10.1163/156853802760061804 DOI: https://doi.org/10.1163/156853802760061804

Bjornstad ON. c2016. ncf: spatial nonparametric covariance functions. R package version 1.1-7. [Last accessed: 02 Dez 2019]. https://cran.rproject.org/web/packages/nfc

Bossuyt F, Roelants K. 2009. Frogs and toads (Anura). In: Hedges SB, Kumar S, editors. The Timetree of Life. Oxford: Oxford University Press. p. 357–364.

Brown RL, Jacobs LA, Peet RK. 2016. Species richness: small scale. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons. p. 1–8.

Buckley LB, Jetz W. 2007. Environmental and historical constraints on global patterns of amphibian richness. Proc. R. Soc. B. 274(1614): 1167–1173. doi: http://doi.org/10.1098/rspb.2006.0436 DOI: https://doi.org/10.1098/rspb.2006.0436

Canavero A, Arim M, Brazeiro A. 2009. Geographic variations of seasonality and coexistence in communities: the role of diversity and climate. Austral Ecol. 34(7): 741–750. doi: http://doi.org/10.1111/j.1442-9993.2009.01980.x DOI: https://doi.org/10.1111/j.1442-9993.2009.01980.x

Chambers JM. c2013. Package ‘SoDA’: Functions and examples for “software for data analysis”. R package version 1.0-6. [Last accessed: 02 Dez 2019]. http://cran.r-project.org/web/packages/SoDA

Chejanovski ZA, Wiens JJ. 2014. Climatic niche breadth and species richness in temperate treefrogs. J. Biogeogr. 41(10): 1936–1946. doi: http://doi.org/10.1111/jbi.12345 DOI: https://doi.org/10.1111/jbi.12345

Chown SL, Van Rensburg BJ, Gaston KJ, Rodrigues ASL, Van Jaarsveld AS. 2003. Energy, species richness, and human population size: conservation implications at a national scale. Ecol. Appl. 13(5): 1233–1241. doi: http://doi.org/10.1890/02-5105 DOI: https://doi.org/10.1890/02-5105

Cincotta RP, Engelman R. 2000. Nature’s Place: Human Population and the Future of Biological Diversity. Washington: Smithsonian Institute.

Climatempo Database. c2019. Climatologia. [Last accessed: 03 Mar 2021]. http://climatempo.com.br

Collins JP, Storfer A. 2003. Global amphibian declines: sorting the hypotheses. Divers. Distrib. 9(2): 89–98. doi: http://doi.org/10.1046/j.1472-4642.2003.00012.x DOI: https://doi.org/10.1046/j.1472-4642.2003.00012.x

Coutinho LM. 2016. Biomas Brasileiros. São Paulo: Oficina de Textos.

Cruz-Elizalde C, Berriozabal-Islas C, Hernández-Salinas U, Martínez-Morales MA, Ramírez-Bautista A. 2016. Amphibian species richness and diversity in a modified tropical environment of central Mexico. Trop. Ecol. 57(3): 407–417.

Currie DJ. 1991. Energy and large-scale patterns of animal-and plant-species richness. Am. Nat. 137(1): 27–49. doi: http://doi.org/10.1086/285144 DOI: https://doi.org/10.1086/285144

Diniz-Filho JAF, Bastos RP, Rangel TFLVB, Bini LM, Carvalho P, Silva RJ. 2005. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Global Ecol. Biogeogr. 14(5): 469–477. http://doi.org/10.1111/j.1466-822X.2005.00165.x DOI: https://doi.org/10.1111/j.1466-822X.2005.00165.x

Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12(1): 53–64. doi: http://doi.org/10.1046/j.1466-822X.2003.00322.x DOI: https://doi.org/10.1046/j.1466-822X.2003.00322.x

Diniz-Filho JAF, Bini LM, Pinto MP, Rangel TFLVB, Carvalho P, Bastos RP. 2006. Anuran species richness, complementarity and conservation conflicts in Brazilian Cerrado. Acta Oecol. 29(1): 9–15. doi: http://doi.org/10.1007/s10531-006-9010-4 DOI: https://doi.org/10.1016/j.actao.2005.07.004

Duellman WE. 1999. Patterns of Distribution of Amphibians: A Global Perspective. Baltimore: John Hopkins University Press. DOI: https://doi.org/10.56021/9780801861154

Dutilleul P, Clifford P, Richardson S, Hemon D. 1993. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49(1): 305–314. doi: https://doi.org/10.2307/2532625 DOI: https://doi.org/10.2307/2532625

Escoriza D, Ruhí A. 2014. Macroecological patterns of amphibian assemblages in the western Palearctic: implications for conservation. Biol. Conserv. 176: 252–261. doi: http://doi.org/10.1016/j.biocon.2014.05.030 DOI: https://doi.org/10.1016/j.biocon.2014.05.030

Evans KL, Van Rensburg BJ, Gaston KJ, Chown EL. 2006. People, species richness and human population growth. Global Ecol. Biogeogr. 15(6): 625–636. doi: http://doi.org/10.1111/j.1466-8238.2006.00253.x DOI: https://doi.org/10.1111/j.1466-8238.2006.00253.x

Ferrer X, Carrascal LM, Gordo O, Pino J. 2006. Bias in avian sampling effort due to human preferences: an analysis with catalonian birds (1900 - 2002). Ardeola 53(2): 213–227.

Frost DR. c2020. Amphibian Species of the World: an online reference. Version 6.0. American Museum of Natural History, New York, USA. [Last accessed: 3 Feb 2020]. http://amphibiansoftheworld.amnh.org

Gaston KJ. 2000. Global patterns in biodiversity. Nature 405: 220–227. doi: http://doi.org/10.1038/35012228 DOI: https://doi.org/10.1038/35012228

Gaston KJ. 2005. Biodiversity and extinction: species and people. Prog. Phys. Geogr. 29(2): 239–247. doi: http://doi.org/10.1191/0309133305pp445pr DOI: https://doi.org/10.1191/0309133305pp445pr

Gonzalez-Voyer A, Padial JM, Castroviejo-FIsher S, De La Riva I, Vila C. 2011. Correlates of species richness in the largest Neotropical amphibian radiation. J. Evol. Biol. 24(5): 931–942. doi: http://doi.org/10.1111/j.1420-9101.2011.02243.x DOI: https://doi.org/10.1111/j.1420-9101.2011.02243.x

Google Earth. c2019. Google Earth Pro. Version 7.3. Google LLC. [Last access: 03 Mar 2021]. http://google.com.br/earth

Gotelli NJ, Chao A. 2013. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA, editor. Encyclopedia of Biodiversity, 2 edition, 5 volume. Waltham: Academic Press .p. 195-211. DOI: https://doi.org/10.1016/B978-0-12-384719-5.00424-X

Gouveia SF, Hortal J, Cassemiro FAS, Rangel TF, Diniz-Filho JAF. 2013. Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography 36(1): 104–113. doi: http://doi.org/10.1111/j.1600-0587.2012.07553.x DOI: https://doi.org/10.1111/j.1600-0587.2012.07553.x

Graham MH. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84(11): 2809–2815. doi: http://doi.org/10.1890/02-3114 DOI: https://doi.org/10.1890/02-3114

Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL. 2009. Análise Multivariada de Dados. Porto Alegre: Bookman.

Hawkins BA, Porter EE, Diniz-FIlho JAF. 2003. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84(6): 1608–1623. doi: http://doi.org/10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2

Heyer WR, Donnely MA, McDiarmid RW, Hayek LAC, Foster MS. 1994. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. Washington: Smithsonian Institution Press.

Holdren JP, Ehrlich PR. 1974. Human population and the global environment: population growth, rising per capita material consumption, and disruptive technologies have made civilization a global ecological force. Am. Sci. 62(3): 282–292.

Huston MA. 2005. The three phases of land-use change: implications for biodiversity. Ecol. Appl. 15(6): 1864–1878. doi: http://doi.org/10.1890/03-5281 DOI: https://doi.org/10.1890/03-5281

IBGE] Insituto Brasileiro de Geografia e Estatística. c2017. Cidades. IBGE. [Last access: 03 Mar 2021]. http://cidades.ibge.gov.brc

Jenkins CN, Pimm SL, Joppa LN. 2013. Global patterns of terrestrial vertebrate diversity. PNAS 110(28): E2602–E2610. doi: http://doi.org/10.1073/pnas.1302251110 DOI: https://doi.org/10.1073/pnas.1302251110

Joly CA, Aidar MPM, Klink CA, McGrath DG, Moreira AG, Moutinho P, Nepstad DC, Oliveira AA, Pott A, Rodal MJN, Sampaio EVSB. 1999. Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Ciência e Cultura, 51(5/6): 331–348.

López JA, Scarabotti PA, Ghirardi R. 2015. Amphibian trophic ecology in increasingly human-altered wetlands. Herpetol. Conserv. Biol. 10(3): 819–832.

Luck GW, Ricketts TH, Daily GC, Imhoff M. 2004. Alleviating spatial conflict between people and biodiversity. Proc. Natl. Acad. Sci. USA. 101(1): 182–186. doi: http://doi.org/10.1073/pnas.2237148100 DOI: https://doi.org/10.1073/pnas.2237148100

Luck GW. 2007. A review of the relationships between human population density and biodiversity. Biol. Rev. 82(4): 607–645. doi: http://doi.org/10.1111/j.1469-185X.2007.00028.x DOI: https://doi.org/10.1111/j.1469-185X.2007.00028.x

Magurran AE. 2004. Measuring biological diversity. Oxford: Blackwell.

McGarigal K, Cushman S, Stafford S. 2000. Multivariate Statistics for Wildlife and Ecology Research. New York: Springer. DOI: https://doi.org/10.1007/978-1-4612-1288-1

Montoya D, Rodríguez MA, Zavala MA, Hawkins BA. 2007. Contemporary richness of holarctic trees and the historical pattern of glacial retreat. Ecography 30(2): 173–182. doi: http://doi.org/10.1111/j.0906-7590.2007.04873.x DOI: https://doi.org/10.1111/j.0906-7590.2007.04873.x

Moreno-Rueda G, Pizarro M. 2009. Relative influence of habitat heterogeneity, climate, human disturbance, and spatial structure on vertebrate species richness in Spain. Ecol. Res. 24: 335–344. doi: http://doi.org/10.1007/s11284-008-0509-x DOI: https://doi.org/10.1007/s11284-008-0509-x

Moura MR, Villalobos F, Costa GC, Garcia PCA. 2016. Disentangling the role of climate, topography and vegetation in species richness gradients. Plos One 11(3): 1–16. doi: http://doi.org/10.1371/journal.pone.0152468 DOI: https://doi.org/10.1371/journal.pone.0152468

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. doi: http://doi.org/10.1038/35002501 DOI: https://doi.org/10.1038/35002501

Oseen KL, Wassersug RJ. 2002. Environmental factors influencing calling in sympatric anurans. Oecologia 133(4): 616–625. doi: http://doi.org/10.1007/s00442-002-1067-5 DOI: https://doi.org/10.1007/s00442-002-1067-5

Pautasso M. 2007. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10(1): 16–24. doi: http://doi.org/10.1111/j.1461-0248.2006.00993.x DOI: https://doi.org/10.1111/j.1461-0248.2006.00993.x

Pyron RA, Wiens JJ. 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. Biol. Sci. 280(1779): 1–10. doi: http://doi.org/10.1098/rspb.2013.1622 DOI: https://doi.org/10.1098/rspb.2013.1622

Qian H, Wang X, Wang S, LI Y. 2007. Environmental determinants of amphibian and reptile species richness in China. Ecography 30: 471–482. doi: http://doi.org/10.1111/j.0906-7590.2007.05025.x DOI: https://doi.org/10.1111/j.0906-7590.2007.05025.x

R Core Team. c2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Last accessed: 25 Sep 2017]. http://www.r-project.org

Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33: 1–5. doi: http://doi.org/10.1111/j.1600-0587.2009.06299.x DOI: https://doi.org/10.1111/j.1600-0587.2009.06299.x

Revelle W. c2020. Psych: procedures for personality and psychological research. Northwestern University, Evanston, Illinois. R package version 2.0.12. [Last access: 03 Mar 2021]. http://CRAN.R-project.org/package=psych

Ricklefs RE. 2005. Historical and ecological dimensions of global patterns in plant diversity. Biol. Skr. 55: 583–603.

Rocha CFD, Hatano FH, Vrcibradic D, Van Sluys M. 2008. Frog species richness, composition and β-diversity in coastal Brazilian restinga habitats. Braz. J. Biol. 68(1): 101–107. doi: http://doi.org/10.1590/S1519-69842008000100014 DOI: https://doi.org/10.1590/S1519-69842008000100014

Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G. 2002. The human footprint and the last of the wild. BioScience 52(10): 891–904. doi: https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 DOI: https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2

Segalla MG, Berneck B, Canedo C, Caramaschi U, Cruz CAG, Garcia PCA, Grant T, Haddad CFB, Lourenço ACC, Mângia S, Mott T, Nascimento LB, Toledo LF, Werneck FP, Langone JA. 2021. List of Brazilian amphibians. Herpetol. Bras. 10(1): 121–216.

Trimble MJ, Van Aarde RJ. 2014. Amphibian and reptile communities and functional groups over a land-use gradient in a coastal tropical forest landscape of high richness and endemicity. Anim. Conserv. 17(5): 441–453. doi: http://doi.org/10.1111/acv.12111 DOI: https://doi.org/10.1111/acv.12111

Wiens JJ. 2007. Global Patterns of diversifi cation and species richness in amphibians. Am. Nat. 170(S2): S86–S106. doi: http://doi.org/10.1086/519396 DOI: https://doi.org/10.1086/519396

Wiens JJ. 2015. Explaining large-scale patterns of vertebrate diversity. Biol. Lett. 11(7): 1–4. doi: http://doi.org/10.1098/rsbl.2015.0506 DOI: https://doi.org/10.1098/rsbl.2015.0506

Williams PH, Margules CR, Hilbert DW. 2002. Data requirements and data sources for biodiversity priority area selection. J. Biosci. 27: 327–338. doi: http://doi.org/10.1007/BF02704963 DOI: https://doi.org/10.1007/BF02704963

Willig MR, Kaufman DM, Stevens RD. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34: 273–309. doi: http://doi.org/10.1146/annurev.ecolsys.34.012103.144032 DOI: https://doi.org/10.1146/annurev.ecolsys.34.012103.144032

Wright DH, Currie DJ, Maurer BA. 1993. Energy supply and patterns of species richness on local and regional scale. In Ricklefs RE, Schluter D, editors. Species diversity in ecological communities: historical and geographical perspectives. Chicago: The University of Chicago Press. p 66–74.

Cómo citar

APA

Protázio, A. dos S., Conceição, L. C. y Protázio, A. dos S. (2022). Human density and sampling time explain richness of anurans in the brazilian biomes. Caldasia, 44(2), 408–420. https://doi.org/10.15446/caldasia.v44n2.86114

ACM

[1]
Protázio, A. dos S., Conceição, L.C. y Protázio, A. dos S. 2022. Human density and sampling time explain richness of anurans in the brazilian biomes. Caldasia. 44, 2 (may 2022), 408–420. DOI:https://doi.org/10.15446/caldasia.v44n2.86114.

ACS

(1)
Protázio, A. dos S.; Conceição, L. C.; Protázio, A. dos S. Human density and sampling time explain richness of anurans in the brazilian biomes. Caldasia 2022, 44, 408-420.

ABNT

PROTÁZIO, A. dos S.; CONCEIÇÃO, L. C.; PROTÁZIO, A. dos S. Human density and sampling time explain richness of anurans in the brazilian biomes. Caldasia, [S. l.], v. 44, n. 2, p. 408–420, 2022. DOI: 10.15446/caldasia.v44n2.86114. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/86114. Acesso em: 14 ago. 2024.

Chicago

Protázio, Arielson dos Santos, Lennise Costa Conceição, y Airan dos Santos Protázio. 2022. «Human density and sampling time explain richness of anurans in the brazilian biomes». Caldasia 44 (2):408-20. https://doi.org/10.15446/caldasia.v44n2.86114.

Harvard

Protázio, A. dos S., Conceição, L. C. y Protázio, A. dos S. (2022) «Human density and sampling time explain richness of anurans in the brazilian biomes», Caldasia, 44(2), pp. 408–420. doi: 10.15446/caldasia.v44n2.86114.

IEEE

[1]
A. dos S. Protázio, L. C. Conceição, y A. dos S. Protázio, «Human density and sampling time explain richness of anurans in the brazilian biomes», Caldasia, vol. 44, n.º 2, pp. 408–420, may 2022.

MLA

Protázio, A. dos S., L. C. Conceição, y A. dos S. Protázio. «Human density and sampling time explain richness of anurans in the brazilian biomes». Caldasia, vol. 44, n.º 2, mayo de 2022, pp. 408-20, doi:10.15446/caldasia.v44n2.86114.

Turabian

Protázio, Arielson dos Santos, Lennise Costa Conceição, y Airan dos Santos Protázio. «Human density and sampling time explain richness of anurans in the brazilian biomes». Caldasia 44, no. 2 (mayo 2, 2022): 408–420. Accedido agosto 14, 2024. https://revistas.unal.edu.co/index.php/cal/article/view/86114.

Vancouver

1.
Protázio A dos S, Conceição LC, Protázio A dos S. Human density and sampling time explain richness of anurans in the brazilian biomes. Caldasia [Internet]. 2 de mayo de 2022 [citado 14 de agosto de 2024];44(2):408-20. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/86114

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Rocio Pamela Demartín, Romina Ghirardi, Javier Alejandro López. (2024). High amphibian diversity throughout urban environmental heterogeneity. Urban Ecosystems, https://doi.org/10.1007/s11252-024-01574-6.

Dimensions

PlumX

Visitas a la página del resumen del artículo

414

Descargas

Los datos de descargas todavía no están disponibles.