Publicado
Divergencia en la estrategia reproductiva de dos especies simpátricas de Anthurium (Araceae) en un bosque andino tropical
Divergence on the reproductive strategy of two sympatric species of Anthurium (Araceae) in a tropical andean forest
DOI:
https://doi.org/10.15446/caldasia.v44n1.89347Palabras clave:
Bosque montano, estrategia reproductiva, intervalo de elevación, visitantes florales (es)Elevation range, floral visitors, montane forest, reproductive strategy (en)
Descargas
Se evaluó la divergencia en la estrategia reproductiva de Anthurium panduriforme y Anthurium caucanum con base en la fenología reproductiva, los patrones de inversión en reproducción individual y poblacional y el éxito reproductivo femenino, a lo largo de un intervalo de elevación entre 2200 y 2900 m ubicado en un bosque Andino tropical de Antioquia, Colombia. Debido a que ambas especies pertenecen al mismo género, con inflorescencias semejantes en estructura, es posible que presenten competencia por polinizadores. Al mismo tiempo, se espera una disminución en el éxito reproductivo con un incremento de la elevación, debido a que la abundancia de insectos visitantes florales disminuye con la elevación. Los individuos reproductivos de ambas especies fueron monitoreados en siete elevaciones durante un año. Los resultados indican estrategias reproductivas contrastantes: picos de floración en diferentes momentos del año y un mayor número de inflorescencias, infrutescencias y éxito reproductivo en A. caucanum comparado con A. panduriforme La producción de inflorescencias y el éxito reproductivo en A. panduriforme no varió significativamente con la elevación, mientras que en A. caucanum disminuyó. Los ensamblajes de visitantes florales difirieron en composición entre especies y su abundancia fue significativamente mayor en A. panduriforme. Las estrategias reproductivas contrastantes, en estas especies que coexisten, podrían reducir la competencia por polinizadores, promover la producción de semillas y el aislamiento reproductivo. Esto es esencial para el mantenimiento de la biodiversidad de plantas al tiempo que les permite coexistir sintópicamente.
The divergence in the reproductive strategy of Anthurium panduriforme and Anthurium caucanum was evaluated based on reproductive phenology, investment patterns in individual and population reproduction, and female reproductive success, along an elevation range between 2200 and 2900 m located in a tropical Andean forest of Antioquia, Colombia. Because both species belong to the same genus, with similar inflorescences in structure, it is possible that they present competition for pollinators. Also, a decrease in reproductive success is expected with an increase in elevation, due to the decrease of abundance of floral visiting insects with elevation. The reproductive individuals of both species were monitored at seven different elevations for one year. The two species studied showed contrasting reproductive strategies: flowering peaks at different times of the year and a greater number of inflorescences, infructescences, and reproductive success for A. caucanum compared to A. panduriforme. Inflorescence production and reproductive success for A. panduriforme did not vary significantly along elevation, whereas it decreased for A. caucanum. The floral visitor assemblages differed in composition between species and their abundance in A. panduriforme was significantly higher. The two species studied exhibit contrasting reproductive strategies, which could reduce competition for pollinators, promote seed production and reproductive isolation. This is essential for the maintenance of plant biodiversity while allowing them to coexist syntopically.
Referencias
Albre J, Gibernau M. 2008. Reproductive biology of Arum italicum (Araceae) in the south of France. Bot. J. Linnean Soc. 156(1): 43–49. doi: https://doi.org/10.1111/j.1095-8339.2007.00737.x DOI: https://doi.org/10.1111/j.1095-8339.2007.00737.x
Arroyo MTK, Primack R, Armesto J. 1982. Community studies in pollination ecology in the high temperate Andes of Central Chile. i. Pollination mechanisms and altitudinal variation. Amer. J. Bot. 69(1): 82-97. doi: https://doi.org/10.1002/j.1537-2197.1982.tb13237.x DOI: https://doi.org/10.1002/j.1537-2197.1982.tb13237.x
Arroyo MTK, Armesto JJ, Primack RB. 1985 Community studies in pollination ecology in the high temperate Andes of Central Chile. II. Effect of temperature and visitation rates and pollination possibilities. Plant. Syst. Evol. 149:187–203. doi: https://doi.org/10.1007/BF00983305 DOI: https://doi.org/10.1007/BF00983305
Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. 2015. The origins of reproductive isolation in plants. New Phytol. 207(4): 968–984 doi: https://doi.org/10.1111/nph.13424 DOI: https://doi.org/10.1111/nph.13424
Baker JD, Cruden RW. 1991. Trips-mediated self-pollination of two facultatively xenogamous wetland species. Amer. J. Bot. 78(7): 959-963. doi: https://doi.org/10.1002/j.1537-2197.1991.tb14499.x DOI: https://doi.org/10.1002/j.1537-2197.1991.tb14499.x
Barrett SCH. 2002. Sexual interference of the floral kind. Heredity. 88(2): 154–159. doi: https://doi.org/10.1038/sj.hdy.6800020 DOI: https://doi.org/10.1038/sj.hdy.6800020
Bazzaz FA, Ackerly DD, Reekie EG. 2000. Reproductive allocation in plants. En: Fenner M, editor. Seeds, the ecology of regeneration in plant communities, 2nd edn. Oxon, UK: CABI Publishing. p. 1–30. DOI: https://doi.org/10.1079/9780851994321.0001
Begon M, Townsend C, Harper J. 2006. Ecology: From Individuals to Ecosystems. Malden, MA: Blackwell Publishing.
Bencke CSC, Morellato PC. 2002. Estudo comparativo da fenologia de nove espécies arbóreas em três tipos de floresta atlântica no sudeste do Brasil. Rev. Bras. Bot. 25(2). doi: https://doi.org/10.1590/S0100-84042002000200012 DOI: https://doi.org/10.1590/S0100-84042002000200012
Bergman PU, Molau U, Holmgren B. 1996. Micrometeorological impacts on insect activity and plant reproductive successin an alpine environment, Swedish Lapland. Artic. Alpine Res. 28 (2): 196-202. doi: https://doi.org/10.2307/1551760 DOI: https://doi.org/10.2307/1551760
Borror DJ, Triplehorn CA, Johnson NF. 1992. An Introduction to the Study of Insects. Philadelphia, Estados Unidos: Sauders College publishing.
Brown B, Borkent A., Cumming J, Wood D, Woodley N, Zumbado M. 2010. Manual of Central American Diptera. Ottawa, Canadá: NRC Research press.
Boyce PC, Croat TB. c2020. The Überlist of Araceae. [Revisada en: 23 Feb 2021] http://www.aroid.org/genera/20201008Uberlist.pdf
Carlsen M. 2011. Understanding the origin and rapid diversification of the genus Anthurium Schott (Araceae), integrating molecular phylogenetics, morphology and fossils. [Ph. D Thesis]: University of Missouri.
Chai SK, Wong SY. 2019. Five pollination guilds of aroids (Araceae) at Mulu National Park (Sarawak, Malaysian Borneo). Webbia. 74(2): 353–371. doi: https://doi.org/10.1080/00837792.2019.1653425 DOI: https://doi.org/10.1080/00837792.2019.1653425
Chartier M, Gibernau M, Renner SS. 2013. The evolution of pollinator–plant interaction types in the Araceae. Evol. 68(5): 1533–1543. doi: https://doi.org/10.1111/evo.12318 DOI: https://doi.org/10.1111/evo.12318
Chouteau M, Barabé D, Gibernau M. 2006. A comparative study of inflorescence characters and pollen-ovule ratios among the genera Philodendron and Anthurium (Araceae). Int. J. Plant Sci. 167 (4): 817–829. doi: https://doi.org/10.1086/504925 DOI: https://doi.org/10.1086/504925
Conner JK, Rush S. 1996. Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia. 105 (4): 509–516. doi. https://doi.org/10.1007/BF00330014 DOI: https://doi.org/10.1007/BF00330014
Croat TB. 1980. Flowering Behavior of the Neotropical Genus Anthurium (Araceae). Am. J. Bot. 67 (6): 888-904. doi: https://doi.org/10.2307/2442430 DOI: https://doi.org/10.1002/j.1537-2197.1980.tb07719.x
Croat T, Carlsen M, Cardona F. 2011. Listado de las plantas vasculares del departamento de Antioquia. En: Idarraga A, Ortiz R, Callejas R, Merello E, editores. Catálogo de las plantas vasculares del departamento de Antioquia. II: 270–287. Bogotá, Colombia: Editorial D’Vinni.
Croat T, Scheffer R. 1983. The sectional groupings of Anthurium (Araceae). Aroideana 6: 85-123.
Croat TB. 1992. Species diversity of Araceae in Colombia: a preliminary survey. Ann. Missouri Bot. Gard. 79(1): 17–28. doi: https://doi.org/10.2307/2399806 DOI: https://doi.org/10.2307/2399806
Cuartas-Hernández SE, Núñez-Farfán J. 2006. The genetic structure of the tropical understory herb Dieffenbachia seguine L. before and after forest fragmentation. Evol. Ecol. Res. 8(6): 1–15.
Cuartas-Hernández SE, Gómez-Murillo L. 2015. Effect of biotic and abiotic factors on diversity patterns of anthophyllous insect communities in a tropical mountain forest. Neotrop. Entomol. 44 (3): 214–223. doi: https://doi.org/10.1007/s13744-014-0265-2 DOI: https://doi.org/10.1007/s13744-014-0265-2
Cuartas-Hernández SE, Moreno-Betancur D, Gibernau Marc, Herrera-Palma M, Hoyos-Serna L. 2019. Contrasting patterns of floral size variation in two sympatric species of Anthurium along an elevation gradient in a tropical mountain forest. International J. Plant Sci. 180(3). doi: https://doi.org/10.1086/701818 DOI: https://doi.org/10.1086/701818
Cuartas-Hernández SE, Moreno-Betancur D. 2020. Contrasting population genetic structure of two sympatric species of Anthurium (Araceae) along elevation in an Andean mountain forest. Biotropica. 52(4):1–15. doi: https://doi.org/10.1111/btp.12775 DOI: https://doi.org/10.1111/btp.12775
Cuesta F, Peralvo M, Valarezo N. 2009. Los bosques monanos de los Andes Tropicales: una evaluación regional de su estado de conservación y de su vulnerabilidad a efectos del cambio climático. Quito, Ecuador: ImprentaMariscal.
De Jong T, Shmida A, Thuijsman F. 2008. Sex allocation in plants and the evolution of monoecy. Evol. Ecol. Res. 10: 1087–1109.
Díaz Jiménez P, Hentrich H, Aguilar-Rodríguez PA, Krömer T, Chartier M, Gibernau M. 2019. A Review on the Pollination of Aroids with Bisexual Flowers. Ann. Missouri Bot. Gard. 104(1): 83-104. doi: https://doi.org/10.3417/2018219 DOI: https://doi.org/10.3417/2018219
Esposito F, Vereecken NJ, Gammella M, Rinaldi R, Laurent P, Tyteca D. 2018. Characterization of sympatric Platanthera bifolia and Platanthera chlorantha (Orchidaceae) populations with intermediate plants. PeerJ. 6: e4256. doi: https://doi.org/10.7717/peerj.4256 DOI: https://doi.org/10.7717/peerj.4256
Fenner M. 1985. Seed Ecology. London: Chapman & Hall. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination Syndromes and Floral Specialization. Annu. Rev. Ecol. Evol. Syst. 35: 375-403. doi: https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132347
Fernández F, Sharkey MJ. 2006. Introducción a los Hymenoptera de la región neotropical. Bogotá, Colombia: Guadalupe Ltda.
Gibernau M. 2003. Pollinators and visitors of aroid inflorescences. Aroideana 26: 66–83.
Gibernau M. 2011. Pollinators and visitors of aroid inflorescences: An addendum. Aroideana 34: 70–83.
Gibernau M. 2016. Pollinators and Visitors of Aroid Inflorescences III - Phylogenetic & Chemical insights. Aroideana. 39 (3): 4–22.
Gómez-Murillo L. 2012. Estructura espacial y temporal de una comunidad altoandina de Araceas de sotobosque y sus visitantes florales en la cordillera Occidental colombiana. [Tesis]. [Medellín]: Universidad de Antioquia.
Gómez-Murillo L, Cuartas-Hernández SE. 2016. Patterns of diversity of flower-visitor assemblages to the understory Araceae in a tropical mountain forest in Colombia. J. Insect. Conserv. 20(6): 1069. doi: https://doi.org/10.1007/s10841-016-9945-z DOI: https://doi.org/10.1007/s10841-016-9945-z
Hargreaves AL, Weiner JL, Eckert CG. 2015. High-elevation range limit of an annual herb is neither caused nor reinforced by declining pollinator service. J. Ecol. 103 (3): 572–584. doi: https://doi.org/10.1111/1365-2745.12377 DOI: https://doi.org/10.1111/1365-2745.12377
Hartley N, Gibernau M. 2019. High Diversity of Biotic Interactions in the Megagenus Anthurium Schott (Araceae). Aroideana J. Inter. Aroid Soc. 42(1): 138-249.
Harvey JA, de Haan L, Verdeny-Vilalta O, Visser B, Gols R. 2019. Reproduction and offspring sex ratios differ markedly among closely related hyperparasitoids living in the same microhabitats. J. Insect Behav. 32 (3): 243–251. doi: https://doi.org/10.1007/s10905-019-09730-z DOI: https://doi.org/10.1007/s10905-019-09730-z
Hentrich H, Kaiser R, Gottsberger G. 2009. Floral biology and reproductive isolation by floral scent in three sympatric aroid species in French Guiana. Plant Biol. 12 (4): 587–96. doi: https://doi.org/10.1111/j.1438-8677.2009.00256.x DOI: https://doi.org/10.1111/j.1438-8677.2009.00256.x
Hoe YC, Gibernau M, Maia ACD, Wong SY, Dafni A. 2016. Flowering mechanisms, pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp. (Araceae) on Borneo. Plant Biol. 18 (4): 563–576. doi: https://doi.org/10.1111/plb.12431 DOI: https://doi.org/10.1111/plb.12431
IBM Corp. 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.
Ledesma-Castañeda EA. 2011. Plan de manejo Reserva Natural La Mesenia-Paramillo [Tesis BSc]. [Caldas, Antioquia]: Servicio Nacional de Aprendizaje SENA.
Lloyd DG, Schoen DJ. 1992. Self and cross-fertilization in plants. I. Functional dimensions. Int. J. Plant Sci. 153 (3): 358–369. doi: https://doi.org/10.1086/297040 DOI: https://doi.org/10.1086/297040
Mayo S, Bogner J, Boyce P, Boyce P. 1997. The genera of Araceae. Balogh Scientific Books. [Revisada en: 06-05-2017]. https://bok.cc/book/981501/595807
Méndez M, Díaz A. 2001. Flowering Dynamics in Arum italicum (Araceae): relative role of inflorescence traits, flowering synchrony, and pollination contexto on fruit iniciation. Am. J. Bot. 88(10): 1774-1780. doi: https://doi.org/10.2307/3558352 DOI: https://doi.org/10.2307/3558352
Messina F, Fox CW. 2001. Offspring size and number. En: Fox CW, Roff D, Fairbairn D, editors. Evolutionary Ecology. Concepts and case studies. New York: Oxford University Press. p. 113–127. DOI: https://doi.org/10.1093/oso/9780195131543.003.0014
Montoya JM, Raffaelli DR. 2010. Climate change, biotic interactions and ecosystem services. Phil. Trans. R. Soc. B. 365: 2013–2018. doi: https://doi.org/10.1098/rstb.2010.0114 DOI: https://doi.org/10.1098/rstb.2010.0114
Mu J, Wu Q, Yang Y, Huang M, Grozinger CM. 2018. Plant reproductive strategies vary under low and high pollinator densities.
Oikos. 127(8): 1081–1094. doi: https://doi.org/10.1111/oik.04711 DOI: https://doi.org/10.1111/oik.04711
Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A. 2009. A framework for comparing pollinator performance: effectiveness and efficiency. Biol. Rev. 85(3): 435–451. doi: https://doi.org/10.1111/j.1469-185X.2009.00108.x DOI: https://doi.org/10.1111/j.1469-185X.2009.00108.x
Ollerton J, Diaz A. 1999. Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation. Oecologia. 119: 340–348. doi: https://doi.org/10.1007/s004420050794 DOI: https://doi.org/10.1007/s004420050794
Phillips RC, McMillan C, Bridges KW. 1983. Phenology of eelgrass, Zostera marina L., along latitudinal gradients in North America. Aquat. Bot. 15 (2): 145–156. doi: https://doi.org/10.1016/0304-3770(83)90025-6 DOI: https://doi.org/10.1016/0304-3770(83)90025-6
Ramírez N. 1998. Aspectos morfológicos y funcionales relacionados con los niveles de óvulos abortados, flores-frutos abortados y eficiencia reproductiva en angiospermas. Mem. Inst. Biol. Exp. 1: 181–184.
Revel N, Alvarez N, Gibernau M, Espíndola A. 2012. Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies. Arthropod-Plant Inter. 6: 35-44. doi: https://doi.org/10.1007/s11829-011-9164-1 DOI: https://doi.org/10.1007/s11829-011-9164-1
Scaven VL, Rafferty NE. 2013. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr. Zool. 59 (3): 418–426. doi: https://doi.org/10.1093/czoolo/59.3.418 DOI: https://doi.org/10.1093/czoolo/59.3.418
Sedio BE, Wright JS, Dick CW. 2012. Trait evolution and the coexistence of a species swarm in the tropical forest understorey. J Ecol. 100(5): 1183–1193. doi: https://doi.org/10.1111/j.1365-2745.2012.01993.x DOI: https://doi.org/10.1111/j.1365-2745.2012.01993.x
Simpson BB, Neff JL. 1981. Alternatives to Pollen and Nectar. Annals of the Missouri Botanical Garden. 68 (2): 301-322. doi: https://doi.org/10.2307/2398800 DOI: https://doi.org/10.2307/2398800
Sperens U. 1997. Long-term variation in, and effects of fertiliser addition on, flower, fruit and seed production in the tree Sorbus aucuparia (Rosaceae). Ecography. 20 (6): 521–537. doi: https://doi.org/10.1111/j.1600-0587.1997.tb00421.x DOI: https://doi.org/10.1111/j.1600-0587.1997.tb00421.x
Stearns SC. 1989. Trade-offs in life-history evolution. Funct. Ecol. 3(3): 259–268. doi: https://doi.org/10.2307/2389364 DOI: https://doi.org/10.2307/2389364
Systat Software Inc. c2020. SigmaPlot for Windows Version 14,5. San Jose, California, USA, [Revisada en: 01-01-2021]. https://www.systatsoftware.com
Uemura S, Ohkawara K, Kudo G, Wada N, Higashi S. 1993. Heat-production and cross-pollination of the Asian skunk cabbage Symplocarpus renifolius (Araceae). Am. J. Bot. 80(6): 635–640. doi: https://doi.org/10.1002/j.1537-2197.1993.tb15233.x DOI: https://doi.org/10.1002/j.1537-2197.1993.tb15233.x
Wiens D, Calvin CL, Wilson CA, Davern CL, Frank D, Seavey SR. 1987. Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Acta Oecol. Int. J. Ecol. 71 (4): 501–509. doi: https://doi.org/10.1007/BF00379288 DOI: https://doi.org/10.1007/BF00379288
Young HJ. 1988. Differential importance of beetle species pollinating Dieffenbachia longispatha (Araceae). Ecology. 69(3): 832–844. doi. https://doi.org/10.2307/1941033 DOI: https://doi.org/10.2307/1941033
Zar JH. 1999. Biostatistical analysis. Fourth edition. New Jersey: Prentice Hall.
Zhou Y, Li X, Zhao Y, Zhou W, Li L, Wang B, Cui X, Chen J, Song Z. 2016. Divergences in reproductive strategy explain the distribution ranges of Vallisneria species in China. Aquat. Bot. 132: 41–48. doi: https://doi.org/10.1016/j.aquabot.2016.04.005 DOI: https://doi.org/10.1016/j.aquabot.2016.04.005
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. María Fernanda Beltrán Cano, Sandra Eugenia Cuartas Hernández. (2024). Flowering phenology patterns promotes pollination facilitation in coexisting Anthurium species from a mountain forest in Colombia. Arthropod-Plant Interactions, 18(5), p.1085. https://doi.org/10.1007/s11829-024-10096-z.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2021 Caldasia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).