Publicado

2022-10-10

Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation

Variación fenotípica foliar en poblaciones naturales de Quillaja saponaria y su relación con la variación climática

DOI:

https://doi.org/10.15446/caldasia.v44n3.90148

Palabras clave:

morphological traits, Phenotypic variation, leaf plasticity, quillay (en)
caracteres morfológicos, plasticidad de la hoja, quillay, variación fenotípica (es)

Descargas

Autores/as

Quillaja saponaria is a sclerophyllus evergreen tree species distributed from 30° to 38° S in Central Chile. In this wide distribution it is expected that the species exhibits phenotypic plasticity in the morphology of leaves associated to climate variation; however, the information on this topic is still scarce. We studied leaf phenotypic variation and its relationship with temperature, precipitation, and aridity in 85 stands of Q. saponaria throughout the natural distribution of the species. The results show that the basal diameter of petiole, the number of secondary veins, and the basal diameter of the principal vein increased with precipitation and decreased with aridity, while the length, basal diameter and the relative length of the petiole decreased with temperature. This confirms that phenotypic variation for foliar characters in Q. saponaria is related to climatic variables indicating an adapting capability of the species to the wide range of environmental conditions in which grows.

Quillaja saponaria es una especie esclerófila siempreverde que se distribuye desde los 30° a los 38° S en Chile central. En este amplio ámbito de distribución se espera que la especie exhiba plasticidad fenotípica en su morfología foliar asociada a la variación climática; sin embargo, la información sobre este tema es escasa. Se estudió la variación morfológica de la hoja en 85 rodales de Q. saponaria a lo largo de la distribución natural de la especie y su relación con la temperatura, precipitación y aridez. Los resultados muestran que el diámetro basal del pecíolo, el número de venas secundarias y el diámetro basal de la vena principal aumentan con la temperatura y disminuyen con la aridez. Por otra parte, la longitud, diámetro basal y longitud relativa del pecíolo disminuyen con el aumento en temperatura. Esto confirma que la variación fenotípica de los caracteres foliares de Q. saponaria está relacionada con las variables climáticas indicando una capacidad de adaptación de la especie a las condiciones climáticas contrastantes en las que se desarrolla.

Referencias

Abarca B. 2019. Propuesta de poblaciones de conservación: Caso de Quillaja saponaria Mol. considerando información genética. [Tesis]. [Santiago]: Universidad de Chile.

Ackerly D, Knight CA, Weiss SB, Barton K, Starmer KP. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457. doi: https://doi.org/10.1007/s004420100805 DOI: https://doi.org/10.1007/s004420100805

Benoit I. 1989. Libro rojo de la flora terrestre de Chile. Chile: CONAF.

Beerling DJ, Woodward FI. 1996. Palaeo-ecophysiological perspectives on plant responses to global change. Trend. Ecol. Evol. 11(1):20–23. doi: https://doi.org/10.1016/0169-5347(96)81060-3 DOI: https://doi.org/10.1016/0169-5347(96)81060-3

Bruschi P, Grossoni P, Bussotti F. 2003. Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17:164–172. doi: https://doi.org/10.1007/s00468-002-0218-y DOI: https://doi.org/10.1007/s00468-002-0218-y

Buckley TN, John GP, Scoffoni C, Sack L. 2015. How does leaf anatomy influence water transport outside the xylem? Plant. Physiol. 168(4):1616–1635. https://doi.org/10.1104/pp.15.00731 DOI: https://doi.org/10.1104/pp.15.00731

Byars SG, Papst W, Hoffmann AA. 2007. Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61(12):2925–2941. doi: https://doi.org/10.1111/j.1558-5646.2007.00248.x DOI: https://doi.org/10.1111/j.1558-5646.2007.00248.x

Carrasco-Urra F, Saldaña A, Molina-Montenegro MA 2019. ¿Pueden los rasgos hidráulicos ayudar a explicar los límites de distribución actual en dos especies de Nothofagus en los Andes de Chile? Gayana Bot. 76(2):237-246. doi: http://dx.doi.org/10.4067/S0717-66432019000200237 DOI: https://doi.org/10.4067/S0717-66432019000200237

Codarin S, Galopin G, Chasseriaux G. 2006. Effect of air humidity on the growth and morphology of Hydrangea macrophylla L. Sci. Hortic. 108(3):303–309. doi: https://doi.org/10.1016/j.scienta.2006.01.036 DOI: https://doi.org/10.1016/j.scienta.2006.01.036

Cruz P, Schulz C, Honeyman P, Cabello A. 2013. Quillaja saponaria Mol. Quillay Familia: Quillajaceae. En: Donoso C, editor. Las Especies Arbóreas de los Bosques Templados de Chile y Argentina. Autoecología, segunda edición. Valdivia, Chile: Marisa Cuneo Ediciones. p. 546-556.

de Boer HJ, Drake PL, Wendt E, Price CA, Schulze ED, Turner NC, Nicolle D, Veneklaas EJ. 2016. Apparent overinvestment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats. Plant Physiol. 172(3):2286-2299. doi: https://doi.org/10.1104/pp.16.01313 DOI: https://doi.org/10.1104/pp.16.01313

De Martonne E. 1926. Une nouvelle fonction climatologique: L’ indice d’aridite. La Meteorologie. 2: 449–458. doi: https://doi.org/10.3406/bagf.1926.6321 DOI: https://doi.org/10.3406/bagf.1926.6321

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very height resolution interpolated surfaces for global land areas. Int. J. Climatol. 25(15):1965–1978. doi: https://doi.org/10.1002/joc.1276 DOI: https://doi.org/10.1002/joc.1276

Hultine KR, Marshall JD. 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40. doi: https://doi.org/10.1007/s004420050986 DOI: https://doi.org/10.1007/s004420050986

Jenks GF. 1967. The Data Model Concept in Statistical Mapping. International Yearbook of Cartography. 7:186–190.

Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Van Dam B, Ducousso A, Forrest I, de Lopez Heredia U, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V. 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann. For. Sci. 59:777-787. https://doi.org/10.1051/forest:2002065 DOI: https://doi.org/10.1051/forest:2002065

Letelier L, Harvey N, Valderrama A, Stoll A, González-Rodríguez A. 2015. Isolation and characterization of 12 microsatellite loci in soapbark, Quillaja saponaria (Quillajaceae). Appl. Plant Sci. 3(5):1-4. doi: https://doi.org/10.3732/apps.1500024 DOI: https://doi.org/10.3732/apps.1500024

Marshall JD, Monserud RA. 1996. Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia 105:13–21. doi: https://doi.org/10.1007/BF00328786 DOI: https://doi.org/10.1007/BF00328786

Martín R, Briones R (1999). Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ. Bot. 53(3):302-311. doi: https://doi.org/10.1007/BF02866642 DOI: https://doi.org/10.1007/BF02866642

Mediavilla S, Gallardo-López V, González-Zurdo P, Escudero A. 2012. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species. Int. J. Biometeorol. 56(5):915-26. doi: https://doi.org/10.1007/s00484-011-0498-2 DOI: https://doi.org/10.1007/s00484-011-0498-2

Ogaya R, Peñuelas J. 2007. Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures. Acta Oecol. 31(2):168-173. https://doi.org/10.1016/j.actao.2006.07.004 DOI: https://doi.org/10.1016/j.actao.2006.07.004

Panek JA, Waring RH. 1995. Carbon isotope variation in Douglas-fir foliage: improving the 13C – climate relationship. Tree Physiol. 15(10):657–663. doi: https://doi.org/10.1093/treephys/15.10.657 DOI: https://doi.org/10.1093/treephys/15.10.657

Pelah D, Abramovich Z, Markus A, Wiesman A. 2002. The use of commercial saponin from Quillaja saponaria bark as a natural larvicidal agent against Aedes aegypti and Culex pipiens. J. Ethnopharmacol. 81(3):407–409. doi: https://doi.org/10.1016/S0378-8741(02)00138-1 DOI: https://doi.org/10.1016/S0378-8741(02)00138-1

Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, Iglesias A, Jaramillo CA, Johnson KR, Jordan GJ, Kraft NJB, Lovelock EC, Lusk Ch.H, Niinemets U, Peñuelas J,Rapson G, Wing SL, Wright IJ. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol. 190(3):724–739. doi: https://doi.org/10.1111/j.1469-8137.2010.03615.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03615.x

Ponton S, Dupouey J-L, Dreyer E. 2004. Leaf morphology as species indicator in seedlings of Quercus robur L. and Q. petraea (Matt.) Liebl.: modulation by irradiance and growth flush. Ann. For. Sci. 61(1):73–80. https://doi.org/10.1051/forest:2003086 DOI: https://doi.org/10.1051/forest:2003086

QGIS Development Team. c2018. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. [Revisada en: 13 abr 2020]. http://www.qgis.org/

Ramos R, Velozo J, Hinrichsen P. 2010. Baja diversidad genética en una especie forestal endémica de Chile (Quillaja saponaria Mol.) revelada por marcadores AFLP y SSR. Ecuador Quito: VII Simposio de Recursos Genéticos para América Latina y el Caribe: 21 al 23 noviembre del 2011. p. 387-388.

Ramirez H-L, Ivey Ch-T, Wright JW, MacDonald BWS, Sork VL. 2020. Variation in leaf shape in a Quercus lobata common garden: tests for adaptation to climate and physiological consequences. Madroño 67(2): https://doi.org/10.3120/0024-9637-67.2.77 DOI: https://doi.org/10.3120/0024-9637-67.2.77

Rodríguez R, Ruiz E, Elissetche J. 2006. Árboles en Chile. Concepción, Chile: Editorial Universidad de Concepción.

Royer DL, Wilf P. 2006. Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. Int. J. Plant Sci. 167(1):11–18. doi: https://doi.org/10.1086/497995 DOI: https://doi.org/10.1086/497995

Sack L, Frole K. 2006. Leaf structural diversity is related to hydraulic capacity in tropical rainforest trees. Ecology 87(2):483-491. doi: https://doi.org/10.1890/05-0710 DOI: https://doi.org/10.1890/05-0710

Sack L, Scoffoni Ch. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New. Phytol. 198(4):983-1000. doi: https://doi.org/10.1111/nph.12253 DOI: https://doi.org/10.1111/nph.12253

Squeo FA, Arancio G, Gutiérrez JR. 2001. Libro rojo de la flora nativa y de los sitios prioritarios para su conservación: Región de Coquimbo. La Serena, Chile: Ediciones Universidad de La Serena.

Wolfe JA. 1993. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin. 2040: 1–71. doi: https://doi.org/10.3133/b2040 DOI: https://doi.org/10.3133/b2040

Xu F, Guo W, Xu W, Wei Y, Wang R. 2009. Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progr. Nat. Sci. 19(12):1789-1798. https://doi.org/10.1016/j.pnsc.2009.10.001 DOI: https://doi.org/10.1016/j.pnsc.2009.10.001

Cómo citar

APA

Magni, C., Espinoza, S., Poch, P., Abarca, B., Grez, I., Martínez, E., Vaswani, S., Toro, N. y Gómez, P. (2022). Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation. Caldasia, 44(3), 484–492. https://doi.org/10.15446/caldasia.v44n3.90148

ACM

[1]
Magni, C., Espinoza, S., Poch, P., Abarca, B., Grez, I., Martínez, E., Vaswani, S., Toro, N. y Gómez, P. 2022. Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation. Caldasia. 44, 3 (sep. 2022), 484–492. DOI:https://doi.org/10.15446/caldasia.v44n3.90148.

ACS

(1)
Magni, C.; Espinoza, S.; Poch, P.; Abarca, B.; Grez, I.; Martínez, E.; Vaswani, S.; Toro, N.; Gómez, P. Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation. Caldasia 2022, 44, 484-492.

ABNT

MAGNI, C.; ESPINOZA, S.; POCH, P.; ABARCA, B.; GREZ, I.; MARTÍNEZ, E.; VASWANI, S.; TORO, N.; GÓMEZ, P. Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation. Caldasia, [S. l.], v. 44, n. 3, p. 484–492, 2022. DOI: 10.15446/caldasia.v44n3.90148. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/90148. Acesso em: 29 mar. 2025.

Chicago

Magni, Carlos, Sergio Espinoza, Paola Poch, Betsabé Abarca, Iván Grez, Eduardo Martínez, Suraj Vaswani, Nicole Toro, y Persy Gómez. 2022. «Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation». Caldasia 44 (3):484-92. https://doi.org/10.15446/caldasia.v44n3.90148.

Harvard

Magni, C., Espinoza, S., Poch, P., Abarca, B., Grez, I., Martínez, E., Vaswani, S., Toro, N. y Gómez, P. (2022) «Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation», Caldasia, 44(3), pp. 484–492. doi: 10.15446/caldasia.v44n3.90148.

IEEE

[1]
C. Magni, «Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation», Caldasia, vol. 44, n.º 3, pp. 484–492, sep. 2022.

MLA

Magni, C., S. Espinoza, P. Poch, B. Abarca, I. Grez, E. Martínez, S. Vaswani, N. Toro, y P. Gómez. «Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation». Caldasia, vol. 44, n.º 3, septiembre de 2022, pp. 484-92, doi:10.15446/caldasia.v44n3.90148.

Turabian

Magni, Carlos, Sergio Espinoza, Paola Poch, Betsabé Abarca, Iván Grez, Eduardo Martínez, Suraj Vaswani, Nicole Toro, y Persy Gómez. «Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation». Caldasia 44, no. 3 (septiembre 1, 2022): 484–492. Accedido marzo 29, 2025. https://revistas.unal.edu.co/index.php/cal/article/view/90148.

Vancouver

1.
Magni C, Espinoza S, Poch P, Abarca B, Grez I, Martínez E, Vaswani S, Toro N, Gómez P. Leaf phenotypic variation in natural populations of Quillaja saponaria and its relationship with climatic variation. Caldasia [Internet]. 1 de septiembre de 2022 [citado 29 de marzo de 2025];44(3):484-92. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/90148

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Ma. Mercedes Martínez-Flores, Mireya Burgos-Hernández, Daniel Sánchez, Monserrat Vázquez-Sánchez. (2025). Leaf morphological variation of Jaltomata (Solanoideae: Solanaceae) in Mexico: usefulness in species recognition. Genetic Resources and Crop Evolution, 72(1), p.201. https://doi.org/10.1007/s10722-024-01975-8.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 1
  • Captures
  • Mendeley - Readers: 5
  • Mentions
  • News: 1
  • Social Media
  • Facebook - Shares, Likes & Comments: 11

Visitas a la página del resumen del artículo

1239

Descargas